
Evaluate the following integral:
\[\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}\]
Answer
511.8k+ views
Hint: As we have no direct formula for the given integral. Therefore, substitute \[{{e}^{x}}=u\] and express integral in terms of u. Then again substitute \[u=\sec \theta \] and then finally solve the integral to get the required value.
Complete step-by-step answer:
Here, we have to solve the integral \[\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}\].
Let us consider the integral given in the question,
\[I=\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}\]
Let us take \[{{e}^{x}}=u\]
We know that \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\]
Hence, by differentiating both sides, we get,
\[{{e}^{x}}dx=du\]
Or, \[u\text{ }dx=du\]
\[\Rightarrow dx=\dfrac{du}{u}\]
By substituting the value of \[{{e}^{x}}=u\] and \[dx=\dfrac{du}{u}\] in the given integral, we get,
\[I=\int{\sqrt{{{\left( u \right)}^{2}}-1}\dfrac{du}{u}}\]
Or, \[I=\int{\dfrac{\sqrt{{{u}^{2}}-1}}{u}du.....\left( i \right)}\]
Now, let us take \[u=\sec \theta \]
We know that \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\]
Therefore by differentiating both sides, we get
\[du=\sec \theta \tan \theta d\theta \]
Now, by substituting \[u=\sec \theta \] and \[du=\sec \theta \tan \theta d\theta \] in equation (i), we get,
\[I=\int{\dfrac{\sqrt{{{\sec }^{2}}\theta -1}}{\sec \theta }.\sec \theta .\tan \theta \text{ }d\theta }\]
Now, by canceling like terms and substituting \[{{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \] in the above expression, we get
\[I=\int{\sqrt{{{\tan }^{2}}\theta }.\tan \theta d\theta }\]
Or, \[I=\int{{{\tan }^{2}}\theta \text{ }d\theta }\]
Again, we know that \[{{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1\]. Therefore we get,
\[I=\int{\left( {{\sec }^{2}}\theta -1 \right)d\theta }\]
We know that \[\int{{{\sec }^{2}}x\text{ }dx=\tan x}\] and \[\int{kdx=kx}\]
By using these, we get,
\[I=\tan \theta -\theta +C....\left( ii \right)\]
We know that \[u=\sec \theta \], so we get,
\[\tan \theta =\sqrt{{{\sec }^{2}}\theta -1}\]
\[\tan \theta =\sqrt{{{u}^{2}}-1}\]
Also, \[\theta ={{\sec }^{-1}}\left( u \right)\]
By substituting the value of \[\tan \theta \] and \[\theta \] in equation (ii), we get,
\[I=\sqrt{{{u}^{2}}-1}-{{\sec }^{-1}}\left( u \right)+C\]
Now by substituting \[u={{e}^{x}}\] in the above equation, we get,
\[I=\sqrt{{{\left( {{e}^{x}} \right)}^{2}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C\]
Or, \[I=\sqrt{{{e}^{2x}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C\]
Therefore, we get \[\int{\sqrt{{{e}^{2x}}-1}dx=\sqrt{{{e}^{2x}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C}\]
Note: Here, students can cross-check their answers by differentiating the answer and checking if it is giving the original integral or not. Also, students can remember these substitutions in these cases to easily solve the questions of this type. Also, students should always convert the answer of the given integral in its original variable like here we have converted \[\theta \] back to x at the end.
Complete step-by-step answer:
Here, we have to solve the integral \[\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}\].
Let us consider the integral given in the question,
\[I=\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}\]
Let us take \[{{e}^{x}}=u\]
We know that \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\]
Hence, by differentiating both sides, we get,
\[{{e}^{x}}dx=du\]
Or, \[u\text{ }dx=du\]
\[\Rightarrow dx=\dfrac{du}{u}\]
By substituting the value of \[{{e}^{x}}=u\] and \[dx=\dfrac{du}{u}\] in the given integral, we get,
\[I=\int{\sqrt{{{\left( u \right)}^{2}}-1}\dfrac{du}{u}}\]
Or, \[I=\int{\dfrac{\sqrt{{{u}^{2}}-1}}{u}du.....\left( i \right)}\]
Now, let us take \[u=\sec \theta \]
We know that \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\]
Therefore by differentiating both sides, we get
\[du=\sec \theta \tan \theta d\theta \]
Now, by substituting \[u=\sec \theta \] and \[du=\sec \theta \tan \theta d\theta \] in equation (i), we get,
\[I=\int{\dfrac{\sqrt{{{\sec }^{2}}\theta -1}}{\sec \theta }.\sec \theta .\tan \theta \text{ }d\theta }\]
Now, by canceling like terms and substituting \[{{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \] in the above expression, we get
\[I=\int{\sqrt{{{\tan }^{2}}\theta }.\tan \theta d\theta }\]
Or, \[I=\int{{{\tan }^{2}}\theta \text{ }d\theta }\]
Again, we know that \[{{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1\]. Therefore we get,
\[I=\int{\left( {{\sec }^{2}}\theta -1 \right)d\theta }\]
We know that \[\int{{{\sec }^{2}}x\text{ }dx=\tan x}\] and \[\int{kdx=kx}\]
By using these, we get,
\[I=\tan \theta -\theta +C....\left( ii \right)\]
We know that \[u=\sec \theta \], so we get,
\[\tan \theta =\sqrt{{{\sec }^{2}}\theta -1}\]
\[\tan \theta =\sqrt{{{u}^{2}}-1}\]
Also, \[\theta ={{\sec }^{-1}}\left( u \right)\]
By substituting the value of \[\tan \theta \] and \[\theta \] in equation (ii), we get,
\[I=\sqrt{{{u}^{2}}-1}-{{\sec }^{-1}}\left( u \right)+C\]
Now by substituting \[u={{e}^{x}}\] in the above equation, we get,
\[I=\sqrt{{{\left( {{e}^{x}} \right)}^{2}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C\]
Or, \[I=\sqrt{{{e}^{2x}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C\]
Therefore, we get \[\int{\sqrt{{{e}^{2x}}-1}dx=\sqrt{{{e}^{2x}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C}\]
Note: Here, students can cross-check their answers by differentiating the answer and checking if it is giving the original integral or not. Also, students can remember these substitutions in these cases to easily solve the questions of this type. Also, students should always convert the answer of the given integral in its original variable like here we have converted \[\theta \] back to x at the end.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
