
Evaluate the following integral $\int{\dfrac{{{x}^{5}}}{{{x}^{2}}+9}dx}$
Answer
553.8k+ views
Hint: To solve the given integral $\int{\dfrac{{{x}^{5}}}{{{x}^{2}}+9}dx}$, we first have to divide the numerator ${{x}^{5}}$ by the denominator ${{x}^{2}}+9$ using the long division method. Then noting the values of the quotient $q\left( x \right)$ and the remainder $r\left( x \right)$, we will write the numerator as ${{x}^{5}}=\left( {{x}^{2}}+9 \right)q\left( x \right)+r\left( x \right)$ and our integral will be split into two integrals. Then we have to solve the two integrals separately using the basic rules of integration.
Complete step by step answer:
Let us write the integral given in the question as
$\Rightarrow I=\int{\dfrac{{{x}^{5}}}{{{x}^{2}}+9}dx}........(i)$
Now we divide the numerator ${{x}^{5}}$ by the denominator ${{x}^{2}}+9$ as below.
${{x}^{2}}+9\overset{{{x}^{3}}-9x}{\overline{\left){\begin{align}
& {{x}^{5}} \\
& \underline{{{x}^{5}}+9{{x}^{3}}} \\
& -9{{x}^{3}} \\
& \underline{-9{{x}^{3}}-81x} \\
& \underline{81x} \\
\end{align}}\right.}}$
From the above division, the quotient is
$\Rightarrow q\left( x \right)={{x}^{3}}-9x........(ii)$
And the remainder is
\[\Rightarrow r\left( x \right)=81x........(iii)\]
So the numerator can be written as
$\Rightarrow {{x}^{5}}=\left( {{x}^{2}}+9 \right)q\left( x \right)+r\left( x \right)$
Putting (ii) and (iii) in the above equation, we get
\[\Rightarrow {{x}^{5}}=\left( {{x}^{2}}+9 \right)\left( {{x}^{3}}-9x \right)+81x\]
Putting the above equation in the equation (i) we get
\[\begin{align}
& \Rightarrow I=\int{\dfrac{\left( {{x}^{2}}+9 \right)\left( {{x}^{3}}-9x \right)+81x}{{{x}^{2}}+9}dx} \\
& \Rightarrow I=\int{\left[ \left( {{x}^{3}}-9x \right)+\dfrac{81x}{{{x}^{2}}+9} \right]dx} \\
& \Rightarrow I=\int{\left( {{x}^{3}}-9x \right)dx}+\int{\dfrac{81x}{{{x}^{2}}+9}dx} \\
\end{align}\]
Let \[{{I}_{1}}=\int{\left( {{x}^{3}}-9x \right)dx}\] and ${{I}_{2}}=\int{\dfrac{81x}{{{x}^{2}}+9}dx}$. So the above equation can be written as
\[\Rightarrow I={{I}_{1}}+{{I}_{2}}........(iv)\]
Let us solve the first integral.
\[\begin{align}
& \Rightarrow {{I}_{1}}=\int{\left( {{x}^{3}}-9x \right)dx} \\
& \Rightarrow {{I}_{1}}=\int{{{x}^{3}}dx}-\int{9xdx} \\
& \Rightarrow {{I}_{1}}=\int{{{x}^{3}}dx}-9\int{xdx} \\
& \Rightarrow {{I}_{1}}=\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+{{C}_{1}}........(v) \\
\end{align}\]
Now, we solve the second integral.
$\begin{align}
& \Rightarrow {{I}_{2}}=\int{\dfrac{81x}{{{x}^{2}}+9}dx} \\
& \Rightarrow {{I}_{2}}=81\int{\dfrac{xdx}{{{x}^{2}}+9}}........(vi) \\
\end{align}$
Let us substitute $t={{x}^{2}}+9$ so that
$\Rightarrow {{x}^{2}}+9=t$
Differentiating both the sides with respect to $x$ we get
$\Rightarrow 2x=\dfrac{dt}{dx}$
Multiplying by $dx$ both sides
\[\begin{align}
& \Rightarrow 2xdx=dt \\
& \Rightarrow xdx=\dfrac{dt}{2} \\
\end{align}\]
Substituting this in (vi) we get
\[\begin{align}
& \Rightarrow {{I}_{2}}=81\int{\dfrac{dt}{2t}} \\
& \Rightarrow {{I}_{2}}=\dfrac{81}{2}\int{\dfrac{dt}{t}} \\
& \Rightarrow {{I}_{2}}=\dfrac{81}{2}\ln \left| t \right|+{{C}_{2}} \\
\end{align}\]
Back substituting $t={{x}^{2}}+9$ we get
$\Rightarrow {{I}_{2}}=\dfrac{81}{2}\ln \left| {{x}^{2}}+9 \right|+{{C}_{2}}$
Since ${{x}^{2}}+9>0$ for all $x$, we can write $\left| {{x}^{2}}+9 \right|={{x}^{2}}+9$ in the above equation to get
\[\Rightarrow {{I}_{2}}=\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+{{C}_{2}}........(vii)\]
Substituting (v) and (vii) in (iv) we get
$\begin{align}
& \Rightarrow I=\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+{{C}_{1}}+\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+{{C}_{2}} \\
& \Rightarrow I=\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+{{C}_{1}}+{{C}_{2}} \\
& \Rightarrow I=\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+C \\
\end{align}$
Where $C={{C}_{1}}+{{C}_{2}}$
Hence, the given integral is equal to $\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+C$.
Note: We can also solve this question without performing the division by directly substituting the denominator ${{x}^{2}}+9=t$ and writing the given integral as $\int{\dfrac{{{x}^{4}}xdx}{{{x}^{2}}+9}}$ and putting ${{x}^{4}}={{\left( t-1 \right)}^{2}}$ and $xdx=\dfrac{dt}{2}$. In this case, our integral will become $\dfrac{1}{2}\int{\dfrac{{{\left( t-9 \right)}^{2}}}{t}}dt$ which can be easily solved by expanding the numerator. By this method too, we will get the same answer as that in the above solution.
Complete step by step answer:
Let us write the integral given in the question as
$\Rightarrow I=\int{\dfrac{{{x}^{5}}}{{{x}^{2}}+9}dx}........(i)$
Now we divide the numerator ${{x}^{5}}$ by the denominator ${{x}^{2}}+9$ as below.
${{x}^{2}}+9\overset{{{x}^{3}}-9x}{\overline{\left){\begin{align}
& {{x}^{5}} \\
& \underline{{{x}^{5}}+9{{x}^{3}}} \\
& -9{{x}^{3}} \\
& \underline{-9{{x}^{3}}-81x} \\
& \underline{81x} \\
\end{align}}\right.}}$
From the above division, the quotient is
$\Rightarrow q\left( x \right)={{x}^{3}}-9x........(ii)$
And the remainder is
\[\Rightarrow r\left( x \right)=81x........(iii)\]
So the numerator can be written as
$\Rightarrow {{x}^{5}}=\left( {{x}^{2}}+9 \right)q\left( x \right)+r\left( x \right)$
Putting (ii) and (iii) in the above equation, we get
\[\Rightarrow {{x}^{5}}=\left( {{x}^{2}}+9 \right)\left( {{x}^{3}}-9x \right)+81x\]
Putting the above equation in the equation (i) we get
\[\begin{align}
& \Rightarrow I=\int{\dfrac{\left( {{x}^{2}}+9 \right)\left( {{x}^{3}}-9x \right)+81x}{{{x}^{2}}+9}dx} \\
& \Rightarrow I=\int{\left[ \left( {{x}^{3}}-9x \right)+\dfrac{81x}{{{x}^{2}}+9} \right]dx} \\
& \Rightarrow I=\int{\left( {{x}^{3}}-9x \right)dx}+\int{\dfrac{81x}{{{x}^{2}}+9}dx} \\
\end{align}\]
Let \[{{I}_{1}}=\int{\left( {{x}^{3}}-9x \right)dx}\] and ${{I}_{2}}=\int{\dfrac{81x}{{{x}^{2}}+9}dx}$. So the above equation can be written as
\[\Rightarrow I={{I}_{1}}+{{I}_{2}}........(iv)\]
Let us solve the first integral.
\[\begin{align}
& \Rightarrow {{I}_{1}}=\int{\left( {{x}^{3}}-9x \right)dx} \\
& \Rightarrow {{I}_{1}}=\int{{{x}^{3}}dx}-\int{9xdx} \\
& \Rightarrow {{I}_{1}}=\int{{{x}^{3}}dx}-9\int{xdx} \\
& \Rightarrow {{I}_{1}}=\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+{{C}_{1}}........(v) \\
\end{align}\]
Now, we solve the second integral.
$\begin{align}
& \Rightarrow {{I}_{2}}=\int{\dfrac{81x}{{{x}^{2}}+9}dx} \\
& \Rightarrow {{I}_{2}}=81\int{\dfrac{xdx}{{{x}^{2}}+9}}........(vi) \\
\end{align}$
Let us substitute $t={{x}^{2}}+9$ so that
$\Rightarrow {{x}^{2}}+9=t$
Differentiating both the sides with respect to $x$ we get
$\Rightarrow 2x=\dfrac{dt}{dx}$
Multiplying by $dx$ both sides
\[\begin{align}
& \Rightarrow 2xdx=dt \\
& \Rightarrow xdx=\dfrac{dt}{2} \\
\end{align}\]
Substituting this in (vi) we get
\[\begin{align}
& \Rightarrow {{I}_{2}}=81\int{\dfrac{dt}{2t}} \\
& \Rightarrow {{I}_{2}}=\dfrac{81}{2}\int{\dfrac{dt}{t}} \\
& \Rightarrow {{I}_{2}}=\dfrac{81}{2}\ln \left| t \right|+{{C}_{2}} \\
\end{align}\]
Back substituting $t={{x}^{2}}+9$ we get
$\Rightarrow {{I}_{2}}=\dfrac{81}{2}\ln \left| {{x}^{2}}+9 \right|+{{C}_{2}}$
Since ${{x}^{2}}+9>0$ for all $x$, we can write $\left| {{x}^{2}}+9 \right|={{x}^{2}}+9$ in the above equation to get
\[\Rightarrow {{I}_{2}}=\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+{{C}_{2}}........(vii)\]
Substituting (v) and (vii) in (iv) we get
$\begin{align}
& \Rightarrow I=\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+{{C}_{1}}+\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+{{C}_{2}} \\
& \Rightarrow I=\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+{{C}_{1}}+{{C}_{2}} \\
& \Rightarrow I=\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+C \\
\end{align}$
Where $C={{C}_{1}}+{{C}_{2}}$
Hence, the given integral is equal to $\dfrac{{{x}^{4}}}{4}-\dfrac{9{{x}^{2}}}{2}+\dfrac{81}{2}\ln \left( {{x}^{2}}+9 \right)+C$.
Note: We can also solve this question without performing the division by directly substituting the denominator ${{x}^{2}}+9=t$ and writing the given integral as $\int{\dfrac{{{x}^{4}}xdx}{{{x}^{2}}+9}}$ and putting ${{x}^{4}}={{\left( t-1 \right)}^{2}}$ and $xdx=\dfrac{dt}{2}$. In this case, our integral will become $\dfrac{1}{2}\int{\dfrac{{{\left( t-9 \right)}^{2}}}{t}}dt$ which can be easily solved by expanding the numerator. By this method too, we will get the same answer as that in the above solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

