
Evaluate the following integral
$\int {{{\tan }^3}2x{\text{ }}\sec 2x{\text{ }}} dx$
Answer
596.4k+ views
Hint- Convert the integral in simpler form by the use of trigonometric identity and algebraic terms.
Solving the trigonometric function, in order to make the integral easy
Taking \[{\text{ta}}{{\text{n}}^3}2x\]
\[ \Rightarrow {\text{ta}}{{\text{n}}^3}2x = {\text{ta}}{{\text{n}}^2}2x \times {\text{tan}}2x\]
As we know that
\[{\text{ta}}{{\text{n}}^2}\theta = {\sec ^2}\theta - 1\]
Substituting the identity in above function
\[\therefore {\text{ta}}{{\text{n}}^3}2x = \left( {{{\sec }^2}2x - 1} \right){\text{tan}}2x\]
So now the question becomes
\[\int {\left[ {\left( {{{\sec }^2}2x - 1} \right){\text{.tan}}2x.\sec 2x} \right]dx} \]
Let us assume
\[\sec 2x = t\]
Differentiating both the sides with respect to $x$
\[
\Rightarrow 2\sec 2x.\tan 2x = \dfrac{{dt}}{{dx}} \\
\Rightarrow \sec 2x.\tan 2xdx = \dfrac{{dt}}{2} \\
\]
Now in the above problem we have
\[{\text{sec2}}x{\text{ = }}t{\text{& sec2}}x{\text{.tan2}}x{\text{ = }}\dfrac{{dt}}{2}\]
So the problem no becomes
\[
\int {\left( {{t^2} - 1} \right)\dfrac{{dt}}{2}} \\
= \dfrac{1}{2}\int {\left( {{t^2} - 1} \right)dt} \\
\]
As we know that
$\left[ {\because \int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]$
So by integration, we get
\[\dfrac{1}{2}\left[ {\dfrac{{{t^3}}}{3} - t} \right]{\text{ + c}}\]
Substituting back the value of $t$ we get
\[
\because t = \sec 2x \\
\Rightarrow \dfrac{1}{2}\left[ {\dfrac{{{{\sec }^3}2x}}{3} - \sec 2x} \right]{\text{ + c}} \\
\Rightarrow \dfrac{{{{\sec }^3}2x}}{6} - \dfrac{{\sec 2x}}{2} + c \\
\]
Hence \[\dfrac{{{{\sec }^3}2x}}{6} - \dfrac{{\sec 2x}}{2} + c\] is the integral of given function.
Note- Whenever we come across complicated trigonometric terms together, we should always try to break them using trigonometric relations and formulas and try to reduce the power. Also sometimes trigonometric terms can be replaced by some algebraic variables but before concluding, it must be converted back to original form.
Solving the trigonometric function, in order to make the integral easy
Taking \[{\text{ta}}{{\text{n}}^3}2x\]
\[ \Rightarrow {\text{ta}}{{\text{n}}^3}2x = {\text{ta}}{{\text{n}}^2}2x \times {\text{tan}}2x\]
As we know that
\[{\text{ta}}{{\text{n}}^2}\theta = {\sec ^2}\theta - 1\]
Substituting the identity in above function
\[\therefore {\text{ta}}{{\text{n}}^3}2x = \left( {{{\sec }^2}2x - 1} \right){\text{tan}}2x\]
So now the question becomes
\[\int {\left[ {\left( {{{\sec }^2}2x - 1} \right){\text{.tan}}2x.\sec 2x} \right]dx} \]
Let us assume
\[\sec 2x = t\]
Differentiating both the sides with respect to $x$
\[
\Rightarrow 2\sec 2x.\tan 2x = \dfrac{{dt}}{{dx}} \\
\Rightarrow \sec 2x.\tan 2xdx = \dfrac{{dt}}{2} \\
\]
Now in the above problem we have
\[{\text{sec2}}x{\text{ = }}t{\text{& sec2}}x{\text{.tan2}}x{\text{ = }}\dfrac{{dt}}{2}\]
So the problem no becomes
\[
\int {\left( {{t^2} - 1} \right)\dfrac{{dt}}{2}} \\
= \dfrac{1}{2}\int {\left( {{t^2} - 1} \right)dt} \\
\]
As we know that
$\left[ {\because \int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]$
So by integration, we get
\[\dfrac{1}{2}\left[ {\dfrac{{{t^3}}}{3} - t} \right]{\text{ + c}}\]
Substituting back the value of $t$ we get
\[
\because t = \sec 2x \\
\Rightarrow \dfrac{1}{2}\left[ {\dfrac{{{{\sec }^3}2x}}{3} - \sec 2x} \right]{\text{ + c}} \\
\Rightarrow \dfrac{{{{\sec }^3}2x}}{6} - \dfrac{{\sec 2x}}{2} + c \\
\]
Hence \[\dfrac{{{{\sec }^3}2x}}{6} - \dfrac{{\sec 2x}}{2} + c\] is the integral of given function.
Note- Whenever we come across complicated trigonometric terms together, we should always try to break them using trigonometric relations and formulas and try to reduce the power. Also sometimes trigonometric terms can be replaced by some algebraic variables but before concluding, it must be converted back to original form.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

