
Evaluate the following Integral:
$\int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{cosec }}x - \cot x} \right)dx$
Answer
605.7k+ views
Hint – In this question Substitute $\log \left( {{\text{cosec }}x - \cot x} \right)$ to
any other variable then differentiate this function w.r.t. x so, use this method to reach the
answer.
Given integration is
$I = \int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{cosec }}x - \cot x}
\right)dx$…………….. (1)
Now, substitute $\log \left( {{\text{cosec }}x - \cot x} \right) = t$
Differentiate above equation w.r.t. x
$\dfrac{d}{{dx}}\log \left( {{\text{cosec }}x - \cot x} \right) = \dfrac{d}{{dx}}t$
As we know that the differentiation of $\log \left( {a + bx} \right) = \dfrac{1}{{a + bx}}\left(
{\dfrac{d}{{dx}}\left( {a + bx} \right)} \right)$ use this property in above differentiation we
have
$\dfrac{1}{{{\text{cosec }}x - \cot x}}\left( {\dfrac{d}{{dx}}\left( {{\text{cosec }}x - \cot x}
\right)} \right) = \dfrac{{dt}}{{dx}}$
Now we know differentiation of $\dfrac{d}{{dx}}{\text{cosec }}x = - {\text{cosec }}x\cot
x,{\text{ }}\dfrac{d}{{dx}}\cot x = - {\text{cose}}{{\text{c}}^2}x$ so, substitute these values in
above equation we have,
$\dfrac{1}{{{\text{cosec }}x - \cot x}}\left( { - {\text{cosec }}x\cot x - \left( { -
{\text{cose}}{{\text{c}}^2}x} \right)} \right)\dfrac{{dx}}{{dx}} = \dfrac{{dt}}{{dx}}$
Now take $\left( {{\text{cosec }}x} \right)$ common from numerator we have
$
\dfrac{{{\text{cosec }}x}}{{{\text{cosec }}x - \cot x}}\left( { - \cot x + {\text{cosec}}x} \right)dx
= dt \\
\Rightarrow {\text{cosec }}x{\text{ }}dx = dt \\
$
Now substitute this value in equation (1) we have.
$
I = \int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{cosec }}x - \cot x} \right)dx \\
I = \int {t{\text{ }}dt} \\
$
Now integrate the above equation we have
$I = \dfrac{{{t^2}}}{2} + c$ , where c is some arbitrary integration constant.
Now re-substitute the value of $t$ we have
$I = \dfrac{{{{\left[ {\log \left( {{\text{cosec }}x - \cot x} \right)} \right]}^2}}}{2} + c$
So, this is the required integration of the given integral.
Note – In such types of questions the key concept we have to remember is to always
substitute some part of integration to any other variable as above then differentiate this
equation w.r.t. given variable and re-substitute this value in the given integral then integrate
using basic property of integration, we will get the required answer.
any other variable then differentiate this function w.r.t. x so, use this method to reach the
answer.
Given integration is
$I = \int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{cosec }}x - \cot x}
\right)dx$…………….. (1)
Now, substitute $\log \left( {{\text{cosec }}x - \cot x} \right) = t$
Differentiate above equation w.r.t. x
$\dfrac{d}{{dx}}\log \left( {{\text{cosec }}x - \cot x} \right) = \dfrac{d}{{dx}}t$
As we know that the differentiation of $\log \left( {a + bx} \right) = \dfrac{1}{{a + bx}}\left(
{\dfrac{d}{{dx}}\left( {a + bx} \right)} \right)$ use this property in above differentiation we
have
$\dfrac{1}{{{\text{cosec }}x - \cot x}}\left( {\dfrac{d}{{dx}}\left( {{\text{cosec }}x - \cot x}
\right)} \right) = \dfrac{{dt}}{{dx}}$
Now we know differentiation of $\dfrac{d}{{dx}}{\text{cosec }}x = - {\text{cosec }}x\cot
x,{\text{ }}\dfrac{d}{{dx}}\cot x = - {\text{cose}}{{\text{c}}^2}x$ so, substitute these values in
above equation we have,
$\dfrac{1}{{{\text{cosec }}x - \cot x}}\left( { - {\text{cosec }}x\cot x - \left( { -
{\text{cose}}{{\text{c}}^2}x} \right)} \right)\dfrac{{dx}}{{dx}} = \dfrac{{dt}}{{dx}}$
Now take $\left( {{\text{cosec }}x} \right)$ common from numerator we have
$
\dfrac{{{\text{cosec }}x}}{{{\text{cosec }}x - \cot x}}\left( { - \cot x + {\text{cosec}}x} \right)dx
= dt \\
\Rightarrow {\text{cosec }}x{\text{ }}dx = dt \\
$
Now substitute this value in equation (1) we have.
$
I = \int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{cosec }}x - \cot x} \right)dx \\
I = \int {t{\text{ }}dt} \\
$
Now integrate the above equation we have
$I = \dfrac{{{t^2}}}{2} + c$ , where c is some arbitrary integration constant.
Now re-substitute the value of $t$ we have
$I = \dfrac{{{{\left[ {\log \left( {{\text{cosec }}x - \cot x} \right)} \right]}^2}}}{2} + c$
So, this is the required integration of the given integral.
Note – In such types of questions the key concept we have to remember is to always
substitute some part of integration to any other variable as above then differentiate this
equation w.r.t. given variable and re-substitute this value in the given integral then integrate
using basic property of integration, we will get the required answer.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

