Answer
Verified
426.9k+ views
Hint: Here, we will first multiply the conjugate of the denominator to both the numerator and denominator of the given fraction. We will then use the algebraic identity and trigonometric identity to simplify the integrand. Then by using the suitable formula of integration, we will integrate the function.
Formula Used:
We will use the following formulas:
1. Trigonometric Identity: \[{\sec ^2}x - {\tan ^2}x = 1\]
2. The difference between the square of the numbers is given by the algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
3. The square of the sum of two numbers is given by an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
4. Integral Formula: \[\int {{{\sec }^2}xdx} = \tan x\]
\[\int {\sec x\tan xdx} = \sec x\]
\[\int {dx} = x\]
Complete Step by Step Solution:
We are given an integral function \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \]
Let the given integral function be \[I\].
\[I = \int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \]
Now, we will multiply the integrand with the conjugate in the numerator and in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}} \times \dfrac{{\sec x + \tan x}}{{\sec x + \tan x}}dx} \]
Now, by using an algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{{{{\sec }^2}x - {{\tan }^2}x}}dx} \]
By using the Trigonometric Identity \[{\sec ^2}x - {\tan ^2}x = 1\], we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{1}dx} \]
\[ \Rightarrow I = \int {{{\left( {\sec x + \tan x} \right)}^2}dx} \]
Now, by using an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we get
\[ \Rightarrow I = \int {\left( {{{\sec }^2}x + {{\tan }^2}x + 2\sec x\tan x} \right)dx} \]
Trigonometric Identity:
Again using the Trigonometric Identity \[{\sec ^2}x - {\tan ^2}x = 1\], we get
\[ \Rightarrow I = \int {\left( {{{\sec }^2}x + {{\sec }^2}x - 1 + 2\sec x\tan x} \right)dx} \]
Adding the like terms, we get
\[ \Rightarrow I = \int {\left( {2{{\sec }^2}x - 1 + 2\sec x\tan x} \right)dx} \]
Now, the integral sign distributes across the summation, we get
\[ \Rightarrow I = \int {2{{\sec }^2}xdx} - \int {dx} + \int {2\sec x\tan xdx} \]
\[ \Rightarrow I = 2\int {{{\sec }^2}xdx} - \int {dx} + 2\int {\sec x\tan xdx} \]
Now, by using the Integral formulas \[\int {{{\sec }^2}xdx} = \tan x\], \[\int {\sec x\tan xdx} = \sec x\] and \[\int {dx} = x\] , we get
\[ \Rightarrow I = 2\tan x - x + 2\sec x + c\]
Now, by taking out the common terms, we get
\[ \Rightarrow I = 2\left( {\tan x + \sec x} \right) - x + c\]
Therefore, the value of \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \] is \[2\left( {\tan x + \sec x} \right) - x + c\].
Thus, option (A) is the correct answer.
Note:
We know that Integration is the process of adding small parts to find the whole parts. Trigonometric identity is an equation which is always true for all the variables. Conjugate is a term where the sign is changed between two terms. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there is no limit in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.
Formula Used:
We will use the following formulas:
1. Trigonometric Identity: \[{\sec ^2}x - {\tan ^2}x = 1\]
2. The difference between the square of the numbers is given by the algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
3. The square of the sum of two numbers is given by an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
4. Integral Formula: \[\int {{{\sec }^2}xdx} = \tan x\]
\[\int {\sec x\tan xdx} = \sec x\]
\[\int {dx} = x\]
Complete Step by Step Solution:
We are given an integral function \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \]
Let the given integral function be \[I\].
\[I = \int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \]
Now, we will multiply the integrand with the conjugate in the numerator and in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}} \times \dfrac{{\sec x + \tan x}}{{\sec x + \tan x}}dx} \]
Now, by using an algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{{{{\sec }^2}x - {{\tan }^2}x}}dx} \]
By using the Trigonometric Identity \[{\sec ^2}x - {\tan ^2}x = 1\], we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{1}dx} \]
\[ \Rightarrow I = \int {{{\left( {\sec x + \tan x} \right)}^2}dx} \]
Now, by using an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we get
\[ \Rightarrow I = \int {\left( {{{\sec }^2}x + {{\tan }^2}x + 2\sec x\tan x} \right)dx} \]
Trigonometric Identity:
Again using the Trigonometric Identity \[{\sec ^2}x - {\tan ^2}x = 1\], we get
\[ \Rightarrow I = \int {\left( {{{\sec }^2}x + {{\sec }^2}x - 1 + 2\sec x\tan x} \right)dx} \]
Adding the like terms, we get
\[ \Rightarrow I = \int {\left( {2{{\sec }^2}x - 1 + 2\sec x\tan x} \right)dx} \]
Now, the integral sign distributes across the summation, we get
\[ \Rightarrow I = \int {2{{\sec }^2}xdx} - \int {dx} + \int {2\sec x\tan xdx} \]
\[ \Rightarrow I = 2\int {{{\sec }^2}xdx} - \int {dx} + 2\int {\sec x\tan xdx} \]
Now, by using the Integral formulas \[\int {{{\sec }^2}xdx} = \tan x\], \[\int {\sec x\tan xdx} = \sec x\] and \[\int {dx} = x\] , we get
\[ \Rightarrow I = 2\tan x - x + 2\sec x + c\]
Now, by taking out the common terms, we get
\[ \Rightarrow I = 2\left( {\tan x + \sec x} \right) - x + c\]
Therefore, the value of \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \] is \[2\left( {\tan x + \sec x} \right) - x + c\].
Thus, option (A) is the correct answer.
Note:
We know that Integration is the process of adding small parts to find the whole parts. Trigonometric identity is an equation which is always true for all the variables. Conjugate is a term where the sign is changed between two terms. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there is no limit in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it