
Evaluate \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx = } \]
A. \[2\left( {\tan x + \sec x} \right) - x + c\]
B. \[\tan x - \sec x + x + c\]
C. \[2\left( {\tan x + \sec x} \right) + c\]
D. \[2\left( {\tan x + \sec x} \right) + x + c\]
Answer
552.9k+ views
Hint: Here, we will first multiply the conjugate of the denominator to both the numerator and denominator of the given fraction. We will then use the algebraic identity and trigonometric identity to simplify the integrand. Then by using the suitable formula of integration, we will integrate the function.
Formula Used:
We will use the following formulas:
1. Trigonometric Identity: \[{\sec ^2}x - {\tan ^2}x = 1\]
2. The difference between the square of the numbers is given by the algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
3. The square of the sum of two numbers is given by an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
4. Integral Formula: \[\int {{{\sec }^2}xdx} = \tan x\]
\[\int {\sec x\tan xdx} = \sec x\]
\[\int {dx} = x\]
Complete Step by Step Solution:
We are given an integral function \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \]
Let the given integral function be \[I\].
\[I = \int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \]
Now, we will multiply the integrand with the conjugate in the numerator and in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}} \times \dfrac{{\sec x + \tan x}}{{\sec x + \tan x}}dx} \]
Now, by using an algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{{{{\sec }^2}x - {{\tan }^2}x}}dx} \]
By using the Trigonometric Identity \[{\sec ^2}x - {\tan ^2}x = 1\], we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{1}dx} \]
\[ \Rightarrow I = \int {{{\left( {\sec x + \tan x} \right)}^2}dx} \]
Now, by using an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we get
\[ \Rightarrow I = \int {\left( {{{\sec }^2}x + {{\tan }^2}x + 2\sec x\tan x} \right)dx} \]
Trigonometric Identity:
Again using the Trigonometric Identity \[{\sec ^2}x - {\tan ^2}x = 1\], we get
\[ \Rightarrow I = \int {\left( {{{\sec }^2}x + {{\sec }^2}x - 1 + 2\sec x\tan x} \right)dx} \]
Adding the like terms, we get
\[ \Rightarrow I = \int {\left( {2{{\sec }^2}x - 1 + 2\sec x\tan x} \right)dx} \]
Now, the integral sign distributes across the summation, we get
\[ \Rightarrow I = \int {2{{\sec }^2}xdx} - \int {dx} + \int {2\sec x\tan xdx} \]
\[ \Rightarrow I = 2\int {{{\sec }^2}xdx} - \int {dx} + 2\int {\sec x\tan xdx} \]
Now, by using the Integral formulas \[\int {{{\sec }^2}xdx} = \tan x\], \[\int {\sec x\tan xdx} = \sec x\] and \[\int {dx} = x\] , we get
\[ \Rightarrow I = 2\tan x - x + 2\sec x + c\]
Now, by taking out the common terms, we get
\[ \Rightarrow I = 2\left( {\tan x + \sec x} \right) - x + c\]
Therefore, the value of \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \] is \[2\left( {\tan x + \sec x} \right) - x + c\].
Thus, option (A) is the correct answer.
Note:
We know that Integration is the process of adding small parts to find the whole parts. Trigonometric identity is an equation which is always true for all the variables. Conjugate is a term where the sign is changed between two terms. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there is no limit in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.
Formula Used:
We will use the following formulas:
1. Trigonometric Identity: \[{\sec ^2}x - {\tan ^2}x = 1\]
2. The difference between the square of the numbers is given by the algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
3. The square of the sum of two numbers is given by an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
4. Integral Formula: \[\int {{{\sec }^2}xdx} = \tan x\]
\[\int {\sec x\tan xdx} = \sec x\]
\[\int {dx} = x\]
Complete Step by Step Solution:
We are given an integral function \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \]
Let the given integral function be \[I\].
\[I = \int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \]
Now, we will multiply the integrand with the conjugate in the numerator and in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}} \times \dfrac{{\sec x + \tan x}}{{\sec x + \tan x}}dx} \]
Now, by using an algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{{{{\sec }^2}x - {{\tan }^2}x}}dx} \]
By using the Trigonometric Identity \[{\sec ^2}x - {\tan ^2}x = 1\], we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{1}dx} \]
\[ \Rightarrow I = \int {{{\left( {\sec x + \tan x} \right)}^2}dx} \]
Now, by using an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we get
\[ \Rightarrow I = \int {\left( {{{\sec }^2}x + {{\tan }^2}x + 2\sec x\tan x} \right)dx} \]
Trigonometric Identity:
Again using the Trigonometric Identity \[{\sec ^2}x - {\tan ^2}x = 1\], we get
\[ \Rightarrow I = \int {\left( {{{\sec }^2}x + {{\sec }^2}x - 1 + 2\sec x\tan x} \right)dx} \]
Adding the like terms, we get
\[ \Rightarrow I = \int {\left( {2{{\sec }^2}x - 1 + 2\sec x\tan x} \right)dx} \]
Now, the integral sign distributes across the summation, we get
\[ \Rightarrow I = \int {2{{\sec }^2}xdx} - \int {dx} + \int {2\sec x\tan xdx} \]
\[ \Rightarrow I = 2\int {{{\sec }^2}xdx} - \int {dx} + 2\int {\sec x\tan xdx} \]
Now, by using the Integral formulas \[\int {{{\sec }^2}xdx} = \tan x\], \[\int {\sec x\tan xdx} = \sec x\] and \[\int {dx} = x\] , we get
\[ \Rightarrow I = 2\tan x - x + 2\sec x + c\]
Now, by taking out the common terms, we get
\[ \Rightarrow I = 2\left( {\tan x + \sec x} \right) - x + c\]
Therefore, the value of \[\int {\dfrac{{\sec x + \tan x}}{{\sec x - \tan x}}dx} \] is \[2\left( {\tan x + \sec x} \right) - x + c\].
Thus, option (A) is the correct answer.
Note:
We know that Integration is the process of adding small parts to find the whole parts. Trigonometric identity is an equation which is always true for all the variables. Conjugate is a term where the sign is changed between two terms. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there is no limit in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

