
Evaluate \[\int {\cos \sqrt x dx} \]
A. \[\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]\]
B. \[2\left[ {\sin \sqrt x - \cos \sqrt x } \right]\]
C. \[2\left[ {\sqrt x \sin \sqrt x + \sqrt x \cos \sqrt x } \right]\]
D. \[2\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]\]
Answer
538.8k+ views
Hint: Here, we will use the Integration by Parts formula to simplify the integrand. Then by using the suitable Integral formula, we will find the integral of the given function. Integration is defined as the summation of all the discrete data.
Formula Used:
We will use the following formula:
1. Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], \[\dfrac{d}{{dx}}\left( C \right) = 1\]
2. Integration by Parts: \[\int {uvdx = uv - \int {vdu} } \]
3. Integral Formula: \[\int {\cos tdt = \sin t} \], \[\int {\sin tdt = - \cos t} \]
Complete Step by Step Solution:
We are given an integral function \[\int {\cos \sqrt x dx} \] .
Let the given integral function be \[I\]
\[I = \int {\cos \sqrt x dx} \] …………………………………………….\[\left( 1 \right)\]
Now, we will substitute a variable for the radical expression in the integrand, we get
\[t = \sqrt x = {\left( x \right)^{\dfrac{1}{2}}}\] ……………………………………...\[\left( 2 \right)\]
Now, we will differentiate the variable with respect to \[x\] using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{2}{x^{\dfrac{1}{2} - 1}}\]
\[ \Rightarrow dt = \dfrac{1}{{2\sqrt x }}dx\]
Now, by rewriting the equation, we get
\[ \Rightarrow dx = 2\sqrt x dt\]
\[ \Rightarrow dx = 2tdt\] ……………………………………………\[\left( 3 \right)\]
Substituting the equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in equation \[\left( 1 \right)\] , we get
\[I = \int {\cos t \cdot 2tdt} \]
\[ \Rightarrow I = 2\int {t\cos tdt} \]
Now, by using Integration by Parts formula \[\int {uvdx = uv - \int {vdu} } \] for the Integral function, we get \[u = t\] according to ILATE rule and \[v = \cos t\] .
Now, we will differentiate the variable \[u\], so we get
\[du = dt\]
Now, we will integrate the variable \[v\] using the formula \[\int {\cos tdt = \sin t} \], so we get
\[\int {\cos tdt = \sin t} \]
Substituting differentiated variable and integrated variable in the integration by parts formula, we get
\[ \Rightarrow \int {t\cos tdt = t\sin t - \int {\sin tdt} } \]
Now, by using the integral formula \[\int {\sin tdt = - \cos t} \], we get
\[ \Rightarrow \int {t\cos tdt = t\sin t - \left( { - \cos t} \right)} \]
\[ \Rightarrow \int {t\cos tdt = t\sin t + \cos t} \] …………………………………………\[\left( 4 \right)\]
Now, by substituting \[I = 2\int {t\cos tdt} \] in the equation \[\left( 4 \right)\], we get
\[ \Rightarrow I = 2\left[ {t\sin t + \cos t} \right] + c\]
Now, by substituting the equation \[\left( 2 \right)\], we get
\[ \Rightarrow I = 2\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]\]
Therefore, the value of \[\int {\cos \sqrt x dx} \] is \[2\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]\].
Thus, option (D) is the correct answer.
Note:
We know that Integration is the process of adding small parts to find the whole parts. While performing the Integration by Parts, the first function is selected according to ILATE rule where Inverse Trigonometric function, followed by Logarithmic function, Arithmetic Function, Trigonometric Function and at last Exponential Function. Integration by Parts is applicable only when the integrand is a product of two Functions.
Formula Used:
We will use the following formula:
1. Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], \[\dfrac{d}{{dx}}\left( C \right) = 1\]
2. Integration by Parts: \[\int {uvdx = uv - \int {vdu} } \]
3. Integral Formula: \[\int {\cos tdt = \sin t} \], \[\int {\sin tdt = - \cos t} \]
Complete Step by Step Solution:
We are given an integral function \[\int {\cos \sqrt x dx} \] .
Let the given integral function be \[I\]
\[I = \int {\cos \sqrt x dx} \] …………………………………………….\[\left( 1 \right)\]
Now, we will substitute a variable for the radical expression in the integrand, we get
\[t = \sqrt x = {\left( x \right)^{\dfrac{1}{2}}}\] ……………………………………...\[\left( 2 \right)\]
Now, we will differentiate the variable with respect to \[x\] using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{2}{x^{\dfrac{1}{2} - 1}}\]
\[ \Rightarrow dt = \dfrac{1}{{2\sqrt x }}dx\]
Now, by rewriting the equation, we get
\[ \Rightarrow dx = 2\sqrt x dt\]
\[ \Rightarrow dx = 2tdt\] ……………………………………………\[\left( 3 \right)\]
Substituting the equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in equation \[\left( 1 \right)\] , we get
\[I = \int {\cos t \cdot 2tdt} \]
\[ \Rightarrow I = 2\int {t\cos tdt} \]
Now, by using Integration by Parts formula \[\int {uvdx = uv - \int {vdu} } \] for the Integral function, we get \[u = t\] according to ILATE rule and \[v = \cos t\] .
Now, we will differentiate the variable \[u\], so we get
\[du = dt\]
Now, we will integrate the variable \[v\] using the formula \[\int {\cos tdt = \sin t} \], so we get
\[\int {\cos tdt = \sin t} \]
Substituting differentiated variable and integrated variable in the integration by parts formula, we get
\[ \Rightarrow \int {t\cos tdt = t\sin t - \int {\sin tdt} } \]
Now, by using the integral formula \[\int {\sin tdt = - \cos t} \], we get
\[ \Rightarrow \int {t\cos tdt = t\sin t - \left( { - \cos t} \right)} \]
\[ \Rightarrow \int {t\cos tdt = t\sin t + \cos t} \] …………………………………………\[\left( 4 \right)\]
Now, by substituting \[I = 2\int {t\cos tdt} \] in the equation \[\left( 4 \right)\], we get
\[ \Rightarrow I = 2\left[ {t\sin t + \cos t} \right] + c\]
Now, by substituting the equation \[\left( 2 \right)\], we get
\[ \Rightarrow I = 2\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]\]
Therefore, the value of \[\int {\cos \sqrt x dx} \] is \[2\left[ {\sqrt x \sin \sqrt x + \cos \sqrt x } \right]\].
Thus, option (D) is the correct answer.
Note:
We know that Integration is the process of adding small parts to find the whole parts. While performing the Integration by Parts, the first function is selected according to ILATE rule where Inverse Trigonometric function, followed by Logarithmic function, Arithmetic Function, Trigonometric Function and at last Exponential Function. Integration by Parts is applicable only when the integrand is a product of two Functions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

