
Equivalent conductance for strong electrolyte on dilution _____.
Answer
223.8k+ views
Hint: The conducting power of the ions present in the solution which is formed by dissolving , electrolyte of 1 gram equivalent in a particular solvent is called equivalent conductance.
The equivalent conductance is denoted by \[{\Lambda _e}\].
Complete step by step solution:
Dilution is defined as a process where the solute concentration is decreased with the addition of solvent.
The variations in the value of equivalent conductance depend on the type of electrolyte.
Strong electrolytes dissociate completely into its substituent ions when dissolved in solvent forming a solution. On increasing the dilution (decreasing the concentration of solute), there is the decline in the attractive force present between the cation and anion which further affect there mobility towards each other. This is known as ionic interference. Due to the increase in dilution, the equivalent conductance increases and at infinite dilution, the value of equivalent conductance is highest and it is termed as equivalent conductance at infinite dilution.
Therefore, the equivalent conductance for strong electrolyte on dilution increases.
The effect of electrolyte concentration on the equivalent conductance is observed by the graph plotted between the equivalent conductance value and square root of concentration.
The graph for strong electrolyte is shown below.

Image: Effect of dilution in the value of equivalent conductance
Note: For strong electrolyte, the number of ions remains the same in the solution at all dilutions, the only change observed is the mobility of ions due to the effect of interionic attraction but in the case of weak electrolyte, the increase in the value of equivalent conductance is due to the increase in the number of ions as weak electrolyte possess a low concentration of ions, so the interionic interaction is negligible.
The equivalent conductance is denoted by \[{\Lambda _e}\].
Complete step by step solution:
Dilution is defined as a process where the solute concentration is decreased with the addition of solvent.
The variations in the value of equivalent conductance depend on the type of electrolyte.
Strong electrolytes dissociate completely into its substituent ions when dissolved in solvent forming a solution. On increasing the dilution (decreasing the concentration of solute), there is the decline in the attractive force present between the cation and anion which further affect there mobility towards each other. This is known as ionic interference. Due to the increase in dilution, the equivalent conductance increases and at infinite dilution, the value of equivalent conductance is highest and it is termed as equivalent conductance at infinite dilution.
Therefore, the equivalent conductance for strong electrolyte on dilution increases.
The effect of electrolyte concentration on the equivalent conductance is observed by the graph plotted between the equivalent conductance value and square root of concentration.
The graph for strong electrolyte is shown below.

Image: Effect of dilution in the value of equivalent conductance
Note: For strong electrolyte, the number of ions remains the same in the solution at all dilutions, the only change observed is the mobility of ions due to the effect of interionic attraction but in the case of weak electrolyte, the increase in the value of equivalent conductance is due to the increase in the number of ions as weak electrolyte possess a low concentration of ions, so the interionic interaction is negligible.
Recently Updated Pages
JEE Main 2026: Exam Dates OUT, Registration Open, Syllabus & Eligibility

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
Understanding Atomic Structure for Beginners

Half Life of Zero Order Reaction for JEE

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Understanding Inertial and Non-Inertial Frames of Reference

Understanding Displacement and Velocity Time Graphs

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding How a Current Loop Acts as a Magnetic Dipole

NCERT Solutions For Class 12 Chemistry Chapter 2 Chapter 2 Solutions Hindi Medium in Hindi - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

CBSE Class 12 Chemistry Question Paper Set 3 2025 with Answers

An alcohol A gives Lucas test within 5 minutes 74 g class 12 chemistry JEE_Main

