Answer

Verified

346.2k+ views

**Hint:**A sphere is a three-dimensional geometric object that is the surface of a ball (viz., analogous to the circular objects in two dimensions, where a "circle" circumscribes its "disk"). A spherical shell is a three-dimensional generalisation of an annulus in geometry. It's the space between two concentric circles of different radii that a ball occupies.

**Complete answer:**

The electric potential (also known as the electric field potential, potential decrease, or electrostatic potential) is the amount of work energy used to transfer a unit of electric charge from a reference point to a particular point in an electric field while avoiding producing.

Consider the ring factor depicted in the diagram. The factor then carries the charge.

\[dq = (2\pi R\sin \theta )Rd\theta \sigma \]

As a result, the potential due to the considered element at the hemisphere's core,

\[d\varphi = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{dq}}{R} = \dfrac{{2\pi \sigma R\sin \theta d\theta }}{{4\pi {\varepsilon _0}}}\]

\[ = \dfrac{{\sigma R}}{{2{\varepsilon _0}}}\sin \theta d\theta \]

As a result of the whole hemisphere's potential

\[\varphi = \dfrac{{R\sigma }}{{2{\varepsilon _0}}}\int_0^{\pi /2} {\sin } \theta d\theta = \dfrac{{\sigma R}}{{2{\varepsilon _0}}}\]

As a result of the problem's symmetry, the hemisphere's net electric field is now oriented towards the negative y-axis. We've got

\[d{E_y} = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{dq\cos \theta }}{{{R^2}}} = \dfrac{\sigma }{{2{\varepsilon _0}}}\sin \theta \cos \theta d\theta \]

\[E = E_y^\prime = \dfrac{\sigma }{{2{\varepsilon _0}}}\int_0^{\pi /2} {\sin } \theta \cos \theta d\theta \]

= \[\dfrac{\sigma }{{4{\varepsilon _0}}}\int_0^{\pi /2} {\sin } 2\theta d\theta = \dfrac{\sigma }{{4{\varepsilon _0}}},{\text{ along }}YO\]

The number of the potentials due to two identical hemispheres can be written as the potential at the centre of a spherical shell.

\[{{\mathbf{V}}_{{\text{total }}}} = {{\mathbf{V}}_{{\text{hemisphere}}{{\text{ }}_1}}} + {{\mathbf{V}}_{{\text{hemisphere}}{{\text{ }}_2}}}\]

\[{{\text{V}}_{{\text{total }}}} = 2\;{{\text{V}}_{{\text{hemisphere }}}}\]

\[ \Rightarrow \dfrac{\sigma }{{{_0}}}{\mathbf{R}} = 2\;{{\text{V}}_{{\text{hemisphere }}}}\]

\[ \Rightarrow {{\mathbf{V}}_{{\text{hemisphere }}}} = \dfrac{\sigma }{{2{_0}}}{\mathbf{R}}\]

**Note:**When time-varying fields are present in electrodynamics, the electric field cannot be represented solely in terms of a scalar potential. Instead, both the scalar electric potential and the magnetic vector potential can be used to express the electric field. Since the electric potential and the magnetic vector potential combine to form a four-vector, Lorentz transformations merge the two types of potential.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE