Answer

Verified

380.1k+ views

**Hint:**Simplify the expression by using the identity for the \[\sec \theta \] and \[\tan \theta \]. After that we need to apply here the product rule of differentiation when the differentiating the two function which is multiplied together,

\[\dfrac{d}{dx}\text{ }[f(x)\text{ }g(x)]\text{ }=\text{ }f(x)\text{ }\left[ \dfrac{d}{dx}\text{ }g(x) \right]\text{ }+\text{ }\left[ \dfrac{d}{dx}\text{ }f(x) \right]\text{ }g(x)\].

Then we need use the chain rule for differentiating function of function,

$\dfrac{d}{dx}f\left[ g(x) \right]=\dfrac{d}{dg(x)}f\left[ g(x) \right]\times \dfrac{d}{dx}g(x)$

By applying rules we have to apply the property of differentiation. Using these concepts we get the answer.

**Complete step by step solution:**

Let us first simplify the given expression.

Let's say that $y=\dfrac{\sec x+\tan x}{\sec x-\tan x}$.

Using $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, we get:

\[\Rightarrow \] $y=\dfrac{\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}}{\dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x}}$

\[\Rightarrow \] $y=\left( \dfrac{1+\sin x}{\cos x} \right)\times \left( \dfrac{\cos x}{1-\sin x} \right)$

\[\Rightarrow \] $y=\dfrac{1+\sin x}{1-\sin x}$

Which can also be written as:

\[\Rightarrow \] $y=(1+\sin x){{(1-\sin x)}^{-1}}$

Now, let us differentiate with respect to x.

Using the product rule of derivatives, we get:

\[\Rightarrow \] $\dfrac{dy}{dx}=(1+\sin x)\left[ \dfrac{d}{dx}{{(1-\sin x)}^{-1}} \right]+\left[ \dfrac{d}{dx}(1+\sin x) \right]{{(1-\sin x)}^{-1}}$

Using the chain rule of derivatives, we get:

\[\Rightarrow \] \[\dfrac{dy}{dx}=(1+\sin x)\left[ (-1){{(1-\sin x)}^{-2}}\dfrac{d}{dx}(1-\sin x) \right]+\left[ \dfrac{d}{dx}(1+\sin x) \right]{{(1-\sin x)}^{-1}}\]

Using $\dfrac{d}{dx}\sin x=\cos x$ and $\dfrac{d}{dx}k=0$, we get:

\[\Rightarrow \] \[\dfrac{dy}{dx}=(1+\sin x)(-1){{(1-\sin x)}^{-2}}(-\cos x)+\cos x{{(1-\sin x)}^{-1}}\]

Which can be written as:

\[\Rightarrow \] \[\dfrac{dy}{dx}=\dfrac{(1+\sin x)(\cos x)}{{{(1-\sin x)}^{2}}}+\dfrac{\cos x}{(1-\sin x)}\]

Separating the common factor $\cos x$, and adding by equating the denominators, we get:

\[\Rightarrow \] \[\dfrac{dy}{dx}=\cos x\left[ \dfrac{1+\sin x}{{{(1-\sin x)}^{2}}}+\dfrac{1-\sin x}{{{(1-\sin x)}^{2}}} \right]\]

**\[\Rightarrow \] \[\dfrac{dy}{dx}=\dfrac{2\cos x}{{{(1-\sin x)}^{2}}}\], which is the required answer.**

**Note:**The final answer can be modified in terms of other trigonometric functions, the resulting value being the same.

Derivatives of Trigonometric Functions:

$\dfrac{d}{dx}\sin x=\cos x$ $\dfrac{d}{dx}\cos x=-\sin x$

$\dfrac{d}{dx}\tan x={{\sec }^{2}}x$ $\dfrac{d}{dx}\cot x=-{{\csc }^{2}}x$

$\dfrac{d}{dx}\sec x=\tan x\sec x$ $\dfrac{d}{dx}\csc x=-\cot x\csc x$

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE