Answer
Verified
494.4k+ views
Hint: Assume $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ and differentiate the equations with respect to $x$ by taking log on both sides.
Complete step-by-step answer:
It is given in the question to differentiate the expression,${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.
Let us consider the given expression as,
$y={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}$
Let us assume that $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ respectively, we get,
$y=u+v$
Now, we have $u={{x}^{\tan x}}$.
So, taking log on both the sides, we get,
$\log u=\log {{x}^{\tan x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\Rightarrow \log u=\tan x.\log x$
Now, differentiating above equation with respect to $x$, we get,
\[\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)\]
We can use the chain rule for differentiating the RHS as below,
\[\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)\]
Since, we know that the derivative of $\log x$is $\dfrac{1}{x}$ and $\tan x$ is ${{\sec }^{2}}x$, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\
\end{align}$
Now putting the value of $u$ in equation (1), we get,
$\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)$
Similarly, we have,$v={{\left( \tan x \right)}^{x}}$.
Again, taking log on both the sides, we get,
$\log v=\log {{\left( \tan x \right)}^{x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\log v=x\log \left( \tan x \right)$
Now, we will differentiate the above equation with respect to $x$. We can use the chain rule on RHS and the standard derivatives and we get,
$\begin{align}
& \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
& \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\
\end{align}$
Therefore, we get,
$\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)$
Now putting the value of $\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}$in equation (3) we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\
& \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
\end{align}$
Note: If you don’t assume $u={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}}$ then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.
Complete step-by-step answer:
It is given in the question to differentiate the expression,${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.
Let us consider the given expression as,
$y={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}$
Let us assume that $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ respectively, we get,
$y=u+v$
Now, we have $u={{x}^{\tan x}}$.
So, taking log on both the sides, we get,
$\log u=\log {{x}^{\tan x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\Rightarrow \log u=\tan x.\log x$
Now, differentiating above equation with respect to $x$, we get,
\[\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)\]
We can use the chain rule for differentiating the RHS as below,
\[\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)\]
Since, we know that the derivative of $\log x$is $\dfrac{1}{x}$ and $\tan x$ is ${{\sec }^{2}}x$, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\
\end{align}$
Now putting the value of $u$ in equation (1), we get,
$\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)$
Similarly, we have,$v={{\left( \tan x \right)}^{x}}$.
Again, taking log on both the sides, we get,
$\log v=\log {{\left( \tan x \right)}^{x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\log v=x\log \left( \tan x \right)$
Now, we will differentiate the above equation with respect to $x$. We can use the chain rule on RHS and the standard derivatives and we get,
$\begin{align}
& \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
& \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\
\end{align}$
Therefore, we get,
$\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)$
Now putting the value of $\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}$in equation (3) we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\
& \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
\end{align}$
Note: If you don’t assume $u={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}}$ then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE