
Differentiate the following expression ${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.
Answer
602.4k+ views
Hint: Assume $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ and differentiate the equations with respect to $x$ by taking log on both sides.
Complete step-by-step answer:
It is given in the question to differentiate the expression,${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.
Let us consider the given expression as,
$y={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}$
Let us assume that $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ respectively, we get,
$y=u+v$
Now, we have $u={{x}^{\tan x}}$.
So, taking log on both the sides, we get,
$\log u=\log {{x}^{\tan x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\Rightarrow \log u=\tan x.\log x$
Now, differentiating above equation with respect to $x$, we get,
\[\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)\]
We can use the chain rule for differentiating the RHS as below,
\[\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)\]
Since, we know that the derivative of $\log x$is $\dfrac{1}{x}$ and $\tan x$ is ${{\sec }^{2}}x$, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\
\end{align}$
Now putting the value of $u$ in equation (1), we get,
$\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)$
Similarly, we have,$v={{\left( \tan x \right)}^{x}}$.
Again, taking log on both the sides, we get,
$\log v=\log {{\left( \tan x \right)}^{x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\log v=x\log \left( \tan x \right)$
Now, we will differentiate the above equation with respect to $x$. We can use the chain rule on RHS and the standard derivatives and we get,
$\begin{align}
& \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
& \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\
\end{align}$
Therefore, we get,
$\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)$
Now putting the value of $\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}$in equation (3) we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\
& \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
\end{align}$
Note: If you don’t assume $u={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}}$ then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.
Complete step-by-step answer:
It is given in the question to differentiate the expression,${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.
Let us consider the given expression as,
$y={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}$
Let us assume that $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ respectively, we get,
$y=u+v$
Now, we have $u={{x}^{\tan x}}$.
So, taking log on both the sides, we get,
$\log u=\log {{x}^{\tan x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\Rightarrow \log u=\tan x.\log x$
Now, differentiating above equation with respect to $x$, we get,
\[\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)\]
We can use the chain rule for differentiating the RHS as below,
\[\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)\]
Since, we know that the derivative of $\log x$is $\dfrac{1}{x}$ and $\tan x$ is ${{\sec }^{2}}x$, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\
\end{align}$
Now putting the value of $u$ in equation (1), we get,
$\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)$
Similarly, we have,$v={{\left( \tan x \right)}^{x}}$.
Again, taking log on both the sides, we get,
$\log v=\log {{\left( \tan x \right)}^{x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\log v=x\log \left( \tan x \right)$
Now, we will differentiate the above equation with respect to $x$. We can use the chain rule on RHS and the standard derivatives and we get,
$\begin{align}
& \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
& \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\
\end{align}$
Therefore, we get,
$\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)$
Now putting the value of $\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}$in equation (3) we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\
& \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
\end{align}$
Note: If you don’t assume $u={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}}$ then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

