# Differentiate the following expression ${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.

Last updated date: 18th Mar 2023

•

Total views: 305.7k

•

Views today: 3.87k

Answer

Verified

305.7k+ views

Hint: Assume $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ and differentiate the equations with respect to $x$ by taking log on both sides.

Complete step-by-step answer:

It is given in the question to differentiate the expression,${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.

Let us consider the given expression as,

$y={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}$

Let us assume that $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ respectively, we get,

$y=u+v$

Now, we have $u={{x}^{\tan x}}$.

So, taking log on both the sides, we get,

$\log u=\log {{x}^{\tan x}}$

As we know that $\log {{a}^{b}}=b\log a$, we can write as,

$\Rightarrow \log u=\tan x.\log x$

Now, differentiating above equation with respect to $x$, we get,

\[\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)\]

We can use the chain rule for differentiating the RHS as below,

\[\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)\]

Since, we know that the derivative of $\log x$is $\dfrac{1}{x}$ and $\tan x$ is ${{\sec }^{2}}x$, we can write,

$\begin{align}

& \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\

& \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\

\end{align}$

Now putting the value of $u$ in equation (1), we get,

$\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)$

Similarly, we have,$v={{\left( \tan x \right)}^{x}}$.

Again, taking log on both the sides, we get,

$\log v=\log {{\left( \tan x \right)}^{x}}$

As we know that $\log {{a}^{b}}=b\log a$, we can write as,

$\log v=x\log \left( \tan x \right)$

Now, we will differentiate the above equation with respect to $x$. We can use the chain rule on RHS and the standard derivatives and we get,

$\begin{align}

& \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\

& \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\

& \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\

\end{align}$

Therefore, we get,

$\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)$

Now putting the value of $\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}$in equation (3) we get,

$\begin{align}

& \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\

& \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\

\end{align}$

Note: If you don’t assume $u={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}}$ then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.

Complete step-by-step answer:

It is given in the question to differentiate the expression,${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.

Let us consider the given expression as,

$y={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}$

Let us assume that $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ respectively, we get,

$y=u+v$

Now, we have $u={{x}^{\tan x}}$.

So, taking log on both the sides, we get,

$\log u=\log {{x}^{\tan x}}$

As we know that $\log {{a}^{b}}=b\log a$, we can write as,

$\Rightarrow \log u=\tan x.\log x$

Now, differentiating above equation with respect to $x$, we get,

\[\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)\]

We can use the chain rule for differentiating the RHS as below,

\[\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)\]

Since, we know that the derivative of $\log x$is $\dfrac{1}{x}$ and $\tan x$ is ${{\sec }^{2}}x$, we can write,

$\begin{align}

& \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\

& \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\

\end{align}$

Now putting the value of $u$ in equation (1), we get,

$\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)$

Similarly, we have,$v={{\left( \tan x \right)}^{x}}$.

Again, taking log on both the sides, we get,

$\log v=\log {{\left( \tan x \right)}^{x}}$

As we know that $\log {{a}^{b}}=b\log a$, we can write as,

$\log v=x\log \left( \tan x \right)$

Now, we will differentiate the above equation with respect to $x$. We can use the chain rule on RHS and the standard derivatives and we get,

$\begin{align}

& \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\

& \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\

& \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\

\end{align}$

Therefore, we get,

$\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)$

Now putting the value of $\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}$in equation (3) we get,

$\begin{align}

& \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\

& \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\

\end{align}$

Note: If you don’t assume $u={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}}$ then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?