Answer
Verified
474k+ views
Hint: Find the center and the radius of the circle from the equation of the circle with the given quantities. Differentiate them, find the value of k and substitute it in the equation of the circle, where k is the center of the circle.
“Complete step-by-step answer:”
We know the equation of a circle is \[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}........(1)\]
Here the center of the family of circles will lie on the y-axis, so it can be taken of the form (0, k) where k is a constant.
Given the line \[y=2\] at point (0, 2) it touches the circle.
Hence the radius of the circle lies from the center (0, k) to the point where the line touches at (0, 2). So by using the distance formula, we can find the radius of the circle.
Distance formula \[=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}},\]
Where \[({{x}_{1}},{{y}_{1}})=(0,k)\] and\[({{x}_{2}},{{y}_{2}})=(0,2)\],
Radius of circle = Distance between these 2 points,
\[\begin{align}
& =\sqrt{{{(0-0)}^{2}}+{{(2-k)}^{2}}} \\
& =\sqrt{{{(2-k)}^{2}}}=2-k \\
\end{align}\]
Hence the radius of the circle is \[2-k\] and center \[(0,k)\]. Substitute these values in the equation of the circle, i.e. in equation (1).
\[{{(x-0)}^{2}}+{{(y-k)}^{2}}={{(2-k)}^{2}}\]
We know \[\begin{align}
& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \Rightarrow {{x}^{2}}+({{y}^{2}}-2ky+{{k}^{2}})=4-4k+{{k}^{2}} \\
\end{align}\]
Cancel out the like terms,
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2ky+4k-4=0 \\
& {{x}^{2}}+{{y}^{2}}-2ky=4-4k......(2) \\
\end{align}\]
Now let us differentiate both sides of equation (2).
\[\begin{align}
& \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}-2ky)=\dfrac{d}{dx}(4-4k) \\
& 2x+2y.\dfrac{dy}{dx}-2k.\dfrac{dy}{dx}=0-0 \\
\end{align}\]
Divide the expression by 2, we get,
\[\begin{align}
& x+y.\dfrac{dy}{dx}-k.\dfrac{dy}{dx}=0 \\
& \therefore k.\dfrac{dy}{dx}=x+y.\dfrac{dy}{dx} \\
& k=\dfrac{x+y.\dfrac{dy}{dx}}{\dfrac{dy}{dx}}=x.\dfrac{dx}{dy}+y \\
& \therefore k=x.\dfrac{dx}{dy}+y.....(3) \\
\end{align}\]
Now let us go back to equation (2).
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2ky=4-4k \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-2ky-4-4k=0 \\
& {{x}^{2}}+{{y}^{2}}-2(ky+2-2k)=0.......(4) \\
\end{align}\]
Now let us substitute the value of k in equation (4) from equation (3).
\[{{x}^{2}}+{{y}^{2}}-2\left[ y\left( x.\dfrac{dx}{dy}+y \right)-2\left( x.\dfrac{dx}{dy}+y \right)+2 \right]=0\]
Open the brackets and simplify the expression.
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2\left[ xy.\dfrac{dx}{dy}+{{y}^{2}}-2x.\dfrac{dx}{dy}-2y+2 \right]=0 \\
& {{x}^{2}}+{{y}^{2}}-2xy.\dfrac{dx}{dy}-2{{y}^{2}}+4x.\dfrac{dx}{dy}+4y-4=0 \\
& \left( {{x}^{2}}+{{y}^{2}}-2{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x.\dfrac{dx}{dy} \right)=0 \\
& \left( {{x}^{2}}-{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x\dfrac{dx}{dy} \right)=0 \\
& {{x}^{2}}-\left( {{y}^{2}}-4y+4 \right)-2x\dfrac{dx}{dy}(y-2)=0 \\
& \because {{y}^{2}}-4y+4={{(y-2)}^{2}}\left[ \because {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \right] \\
& \Rightarrow {{x}^{2}}-{{(y-2)}^{2}}-2x\dfrac{dx}{dy}(y-2)=0 \\
& {{x}^{2}}-(y-2)\left[ \left( y-2 \right)+2x\dfrac{dx}{dy} \right]=0 \\
& {{x}^{2}}+(y-2)\left[ 2-2x.\dfrac{dx}{dy}-y \right]=0 \\
\end{align}\]
Hence we got the differential equation of the family of circles touching the line \[y=2\] at (0, 2).
Option D is the correct answer.
Note: It is said that the circle touches the line y=2, we have not been given the center of the circle but that it lies on y axis, x=0. So the center becomes (0, k) where k is a constant. So if a circle touches the line y=2, then the radius of the circle stretches from (0, k) to the line y=2.
“Complete step-by-step answer:”
We know the equation of a circle is \[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}........(1)\]
Here the center of the family of circles will lie on the y-axis, so it can be taken of the form (0, k) where k is a constant.
Given the line \[y=2\] at point (0, 2) it touches the circle.
Hence the radius of the circle lies from the center (0, k) to the point where the line touches at (0, 2). So by using the distance formula, we can find the radius of the circle.
Distance formula \[=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}},\]
Where \[({{x}_{1}},{{y}_{1}})=(0,k)\] and\[({{x}_{2}},{{y}_{2}})=(0,2)\],
Radius of circle = Distance between these 2 points,
\[\begin{align}
& =\sqrt{{{(0-0)}^{2}}+{{(2-k)}^{2}}} \\
& =\sqrt{{{(2-k)}^{2}}}=2-k \\
\end{align}\]
Hence the radius of the circle is \[2-k\] and center \[(0,k)\]. Substitute these values in the equation of the circle, i.e. in equation (1).
\[{{(x-0)}^{2}}+{{(y-k)}^{2}}={{(2-k)}^{2}}\]
We know \[\begin{align}
& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \Rightarrow {{x}^{2}}+({{y}^{2}}-2ky+{{k}^{2}})=4-4k+{{k}^{2}} \\
\end{align}\]
Cancel out the like terms,
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2ky+4k-4=0 \\
& {{x}^{2}}+{{y}^{2}}-2ky=4-4k......(2) \\
\end{align}\]
Now let us differentiate both sides of equation (2).
\[\begin{align}
& \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}-2ky)=\dfrac{d}{dx}(4-4k) \\
& 2x+2y.\dfrac{dy}{dx}-2k.\dfrac{dy}{dx}=0-0 \\
\end{align}\]
Divide the expression by 2, we get,
\[\begin{align}
& x+y.\dfrac{dy}{dx}-k.\dfrac{dy}{dx}=0 \\
& \therefore k.\dfrac{dy}{dx}=x+y.\dfrac{dy}{dx} \\
& k=\dfrac{x+y.\dfrac{dy}{dx}}{\dfrac{dy}{dx}}=x.\dfrac{dx}{dy}+y \\
& \therefore k=x.\dfrac{dx}{dy}+y.....(3) \\
\end{align}\]
Now let us go back to equation (2).
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2ky=4-4k \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-2ky-4-4k=0 \\
& {{x}^{2}}+{{y}^{2}}-2(ky+2-2k)=0.......(4) \\
\end{align}\]
Now let us substitute the value of k in equation (4) from equation (3).
\[{{x}^{2}}+{{y}^{2}}-2\left[ y\left( x.\dfrac{dx}{dy}+y \right)-2\left( x.\dfrac{dx}{dy}+y \right)+2 \right]=0\]
Open the brackets and simplify the expression.
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2\left[ xy.\dfrac{dx}{dy}+{{y}^{2}}-2x.\dfrac{dx}{dy}-2y+2 \right]=0 \\
& {{x}^{2}}+{{y}^{2}}-2xy.\dfrac{dx}{dy}-2{{y}^{2}}+4x.\dfrac{dx}{dy}+4y-4=0 \\
& \left( {{x}^{2}}+{{y}^{2}}-2{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x.\dfrac{dx}{dy} \right)=0 \\
& \left( {{x}^{2}}-{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x\dfrac{dx}{dy} \right)=0 \\
& {{x}^{2}}-\left( {{y}^{2}}-4y+4 \right)-2x\dfrac{dx}{dy}(y-2)=0 \\
& \because {{y}^{2}}-4y+4={{(y-2)}^{2}}\left[ \because {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \right] \\
& \Rightarrow {{x}^{2}}-{{(y-2)}^{2}}-2x\dfrac{dx}{dy}(y-2)=0 \\
& {{x}^{2}}-(y-2)\left[ \left( y-2 \right)+2x\dfrac{dx}{dy} \right]=0 \\
& {{x}^{2}}+(y-2)\left[ 2-2x.\dfrac{dx}{dy}-y \right]=0 \\
\end{align}\]
Hence we got the differential equation of the family of circles touching the line \[y=2\] at (0, 2).
Option D is the correct answer.
Note: It is said that the circle touches the line y=2, we have not been given the center of the circle but that it lies on y axis, x=0. So the center becomes (0, k) where k is a constant. So if a circle touches the line y=2, then the radius of the circle stretches from (0, k) to the line y=2.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE