# Differential equation of the family of circles touching the line \[y=2\] at (0,2) is:

A. \[{{x}^{2}}+{{(y-2)}^{2}}+\dfrac{dy}{dx}(y-2)=0\]

B. \[{{x}^{2}}+(y-2)\left( 2-2x\dfrac{dx}{dy}-y \right)=0\]

C. \[{{x}^{2}}+{{(y-2)}^{2}}+\left( \dfrac{dx}{dy}+y-2 \right)(y-2)=0\]

D. None of the above

Answer

Verified

361.5k+ views

Hint: Find the center and the radius of the circle from the equation of the circle with the given quantities. Differentiate them, find the value of k and substitute it in the equation of the circle, where k is the center of the circle.

“Complete step-by-step answer:”

We know the equation of a circle is \[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}........(1)\]

Here the center of the family of circles will lie on the y-axis, so it can be taken of the form (0, k) where k is a constant.

Given the line \[y=2\] at point (0, 2) it touches the circle.

Hence the radius of the circle lies from the center (0, k) to the point where the line touches at (0, 2). So by using the distance formula, we can find the radius of the circle.

Distance formula \[=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}},\]

Where \[({{x}_{1}},{{y}_{1}})=(0,k)\] and\[({{x}_{2}},{{y}_{2}})=(0,2)\],

Radius of circle = Distance between these 2 points,

\[\begin{align}

& =\sqrt{{{(0-0)}^{2}}+{{(2-k)}^{2}}} \\

& =\sqrt{{{(2-k)}^{2}}}=2-k \\

\end{align}\]

Hence the radius of the circle is \[2-k\] and center \[(0,k)\]. Substitute these values in the equation of the circle, i.e. in equation (1).

\[{{(x-0)}^{2}}+{{(y-k)}^{2}}={{(2-k)}^{2}}\]

We know \[\begin{align}

& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\

& \Rightarrow {{x}^{2}}+({{y}^{2}}-2ky+{{k}^{2}})=4-4k+{{k}^{2}} \\

\end{align}\]

Cancel out the like terms,

\[\begin{align}

& {{x}^{2}}+{{y}^{2}}-2ky+4k-4=0 \\

& {{x}^{2}}+{{y}^{2}}-2ky=4-4k......(2) \\

\end{align}\]

Now let us differentiate both sides of equation (2).

\[\begin{align}

& \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}-2ky)=\dfrac{d}{dx}(4-4k) \\

& 2x+2y.\dfrac{dy}{dx}-2k.\dfrac{dy}{dx}=0-0 \\

\end{align}\]

Divide the expression by 2, we get,

\[\begin{align}

& x+y.\dfrac{dy}{dx}-k.\dfrac{dy}{dx}=0 \\

& \therefore k.\dfrac{dy}{dx}=x+y.\dfrac{dy}{dx} \\

& k=\dfrac{x+y.\dfrac{dy}{dx}}{\dfrac{dy}{dx}}=x.\dfrac{dx}{dy}+y \\

& \therefore k=x.\dfrac{dx}{dy}+y.....(3) \\

\end{align}\]

Now let us go back to equation (2).

\[\begin{align}

& {{x}^{2}}+{{y}^{2}}-2ky=4-4k \\

& \Rightarrow {{x}^{2}}+{{y}^{2}}-2ky-4-4k=0 \\

& {{x}^{2}}+{{y}^{2}}-2(ky+2-2k)=0.......(4) \\

\end{align}\]

Now let us substitute the value of k in equation (4) from equation (3).

\[{{x}^{2}}+{{y}^{2}}-2\left[ y\left( x.\dfrac{dx}{dy}+y \right)-2\left( x.\dfrac{dx}{dy}+y \right)+2 \right]=0\]

Open the brackets and simplify the expression.

\[\begin{align}

& {{x}^{2}}+{{y}^{2}}-2\left[ xy.\dfrac{dx}{dy}+{{y}^{2}}-2x.\dfrac{dx}{dy}-2y+2 \right]=0 \\

& {{x}^{2}}+{{y}^{2}}-2xy.\dfrac{dx}{dy}-2{{y}^{2}}+4x.\dfrac{dx}{dy}+4y-4=0 \\

& \left( {{x}^{2}}+{{y}^{2}}-2{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x.\dfrac{dx}{dy} \right)=0 \\

& \left( {{x}^{2}}-{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x\dfrac{dx}{dy} \right)=0 \\

& {{x}^{2}}-\left( {{y}^{2}}-4y+4 \right)-2x\dfrac{dx}{dy}(y-2)=0 \\

& \because {{y}^{2}}-4y+4={{(y-2)}^{2}}\left[ \because {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \right] \\

& \Rightarrow {{x}^{2}}-{{(y-2)}^{2}}-2x\dfrac{dx}{dy}(y-2)=0 \\

& {{x}^{2}}-(y-2)\left[ \left( y-2 \right)+2x\dfrac{dx}{dy} \right]=0 \\

& {{x}^{2}}+(y-2)\left[ 2-2x.\dfrac{dx}{dy}-y \right]=0 \\

\end{align}\]

Hence we got the differential equation of the family of circles touching the line \[y=2\] at (0, 2).

Option D is the correct answer.

Note: It is said that the circle touches the line y=2, we have not been given the center of the circle but that it lies on y axis, x=0. So the center becomes (0, k) where k is a constant. So if a circle touches the line y=2, then the radius of the circle stretches from (0, k) to the line y=2.

“Complete step-by-step answer:”

We know the equation of a circle is \[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}........(1)\]

Here the center of the family of circles will lie on the y-axis, so it can be taken of the form (0, k) where k is a constant.

Given the line \[y=2\] at point (0, 2) it touches the circle.

Hence the radius of the circle lies from the center (0, k) to the point where the line touches at (0, 2). So by using the distance formula, we can find the radius of the circle.

Distance formula \[=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}},\]

Where \[({{x}_{1}},{{y}_{1}})=(0,k)\] and\[({{x}_{2}},{{y}_{2}})=(0,2)\],

Radius of circle = Distance between these 2 points,

\[\begin{align}

& =\sqrt{{{(0-0)}^{2}}+{{(2-k)}^{2}}} \\

& =\sqrt{{{(2-k)}^{2}}}=2-k \\

\end{align}\]

Hence the radius of the circle is \[2-k\] and center \[(0,k)\]. Substitute these values in the equation of the circle, i.e. in equation (1).

\[{{(x-0)}^{2}}+{{(y-k)}^{2}}={{(2-k)}^{2}}\]

We know \[\begin{align}

& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\

& \Rightarrow {{x}^{2}}+({{y}^{2}}-2ky+{{k}^{2}})=4-4k+{{k}^{2}} \\

\end{align}\]

Cancel out the like terms,

\[\begin{align}

& {{x}^{2}}+{{y}^{2}}-2ky+4k-4=0 \\

& {{x}^{2}}+{{y}^{2}}-2ky=4-4k......(2) \\

\end{align}\]

Now let us differentiate both sides of equation (2).

\[\begin{align}

& \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}-2ky)=\dfrac{d}{dx}(4-4k) \\

& 2x+2y.\dfrac{dy}{dx}-2k.\dfrac{dy}{dx}=0-0 \\

\end{align}\]

Divide the expression by 2, we get,

\[\begin{align}

& x+y.\dfrac{dy}{dx}-k.\dfrac{dy}{dx}=0 \\

& \therefore k.\dfrac{dy}{dx}=x+y.\dfrac{dy}{dx} \\

& k=\dfrac{x+y.\dfrac{dy}{dx}}{\dfrac{dy}{dx}}=x.\dfrac{dx}{dy}+y \\

& \therefore k=x.\dfrac{dx}{dy}+y.....(3) \\

\end{align}\]

Now let us go back to equation (2).

\[\begin{align}

& {{x}^{2}}+{{y}^{2}}-2ky=4-4k \\

& \Rightarrow {{x}^{2}}+{{y}^{2}}-2ky-4-4k=0 \\

& {{x}^{2}}+{{y}^{2}}-2(ky+2-2k)=0.......(4) \\

\end{align}\]

Now let us substitute the value of k in equation (4) from equation (3).

\[{{x}^{2}}+{{y}^{2}}-2\left[ y\left( x.\dfrac{dx}{dy}+y \right)-2\left( x.\dfrac{dx}{dy}+y \right)+2 \right]=0\]

Open the brackets and simplify the expression.

\[\begin{align}

& {{x}^{2}}+{{y}^{2}}-2\left[ xy.\dfrac{dx}{dy}+{{y}^{2}}-2x.\dfrac{dx}{dy}-2y+2 \right]=0 \\

& {{x}^{2}}+{{y}^{2}}-2xy.\dfrac{dx}{dy}-2{{y}^{2}}+4x.\dfrac{dx}{dy}+4y-4=0 \\

& \left( {{x}^{2}}+{{y}^{2}}-2{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x.\dfrac{dx}{dy} \right)=0 \\

& \left( {{x}^{2}}-{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x\dfrac{dx}{dy} \right)=0 \\

& {{x}^{2}}-\left( {{y}^{2}}-4y+4 \right)-2x\dfrac{dx}{dy}(y-2)=0 \\

& \because {{y}^{2}}-4y+4={{(y-2)}^{2}}\left[ \because {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \right] \\

& \Rightarrow {{x}^{2}}-{{(y-2)}^{2}}-2x\dfrac{dx}{dy}(y-2)=0 \\

& {{x}^{2}}-(y-2)\left[ \left( y-2 \right)+2x\dfrac{dx}{dy} \right]=0 \\

& {{x}^{2}}+(y-2)\left[ 2-2x.\dfrac{dx}{dy}-y \right]=0 \\

\end{align}\]

Hence we got the differential equation of the family of circles touching the line \[y=2\] at (0, 2).

Option D is the correct answer.

Note: It is said that the circle touches the line y=2, we have not been given the center of the circle but that it lies on y axis, x=0. So the center becomes (0, k) where k is a constant. So if a circle touches the line y=2, then the radius of the circle stretches from (0, k) to the line y=2.

Last updated date: 01st Oct 2023

•

Total views: 361.5k

•

Views today: 4.61k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE