
What is \[\dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\], where \[z = \sin x\]
Answer
506.1k+ views
Hint: Here in this question, we have to find the derivative of the given function, here the function is a trigonometric function. To solve this, we use the standard differentiation formulas of trigonometry functions. The function also contains the product function, by using the product rule we obtain the solution for the given question.
Complete step by step solution:
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.
Trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles. In trigonometry we have six trigonometry ratios namely sine, cosine, tangent, cosecant, secant and cotangent.
Now we consider the given question
\[\dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\]
We can solve this by two methods
Method 1:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\]
The function which we have to differentiate is in the form of a product of two functions. So we apply the product rule for it
The product rule is given by \[\dfrac{d}{{dx}}\left( {u.v} \right) = u.\dfrac{{dv}}{{dx}} + v.\dfrac{{du}}{{dx}}\], therefore we have
\[ \Rightarrow \cos x.\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dz}}} \right) + \dfrac{{dy}}{{dz}}.\dfrac{d}{{dx}}(\cos x)\]------- (1)
As we know that \[z = \sin x\], on differentiating z we have
\[ \Rightarrow dz = \cos x.dx\]
Substituting this in the (1)
\[ \Rightarrow \cos x.\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{\cos x.dx}}} \right) + \dfrac{{dy}}{{\cos x.dx}}.\dfrac{d}{{dx}}(\cos x)\]
Using the reciprocal trigonometric ratios we have
\[ \Rightarrow \cos x.\dfrac{d}{{dx}}\left( {\sec x\dfrac{{dy}}{{dx}}} \right) + \sec x\dfrac{{dy}}{{dx}}.\dfrac{d}{{dx}}(\cos x)\]
On differentiating we have
\[ \Rightarrow \cos x.\left( {\sec x.\dfrac{{{d^2}y}}{{d{x^2}}} + \sec x.\tan x\dfrac{{dy}}{{dx}}} \right) + \sec x\dfrac{{dy}}{{dx}}.( - \sin x)\]
On simplifying the trigonometric ratios.
\[ \Rightarrow \cos x.\sec x.\dfrac{{{d^2}y}}{{d{x^2}}} + \cos x.\sec x.\tan x\dfrac{{dy}}{{dx}} - \sin x\sec x\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow \cos x.\dfrac{1}{{\cos x}}.\dfrac{{{d^2}y}}{{d{x^2}}} + \cos x.\dfrac{1}{{\cos x}}.\dfrac{{\sin x}}{{\cos x}}\dfrac{{dy}}{{dx}} - \sin x.\dfrac{1}{{\cos x}}\dfrac{{dy}}{{dx}}\]
Cancelling the terms which gets cancels, we have
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + \tan x\dfrac{{dy}}{{dx}} - \tan x\dfrac{{dy}}{{dx}}\]
On further simplifying we have
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\]
Hence this the derivative.
We can also solve this by another method
Method 2:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\]-------- (2)
As we know that \[z = \sin x\], on differentiating z we have
\[ \Rightarrow dz = \cos x.dx\]
Substituting this in (2)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{\cos x.dx}}} \right)\]
On simplifying we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right)\]
On differentiating we have
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\]
Therefore \[\dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right) = \dfrac{{{d^2}y}}{{d{x^2}}}\]
So, the correct answer is “\[\dfrac{{{d^2}y}}{{d{x^2}}}\]”.
Note: We can also solve this by another method
Method 2:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\]-------- (2)
As we know that \[z = \sin x\], on differentiating z we have
\[ \Rightarrow dz = \cos x.dx\]
Substituting this in (2)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{\cos x.dx}}} \right)\]
On simplifying we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right)\]
On differentiating we have
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\]
Therefore \[\dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right) = \dfrac{{{d^2}y}}{{d{x^2}}}\]
Complete step by step solution:
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.
Trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles. In trigonometry we have six trigonometry ratios namely sine, cosine, tangent, cosecant, secant and cotangent.
Now we consider the given question
\[\dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\]
We can solve this by two methods
Method 1:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\]
The function which we have to differentiate is in the form of a product of two functions. So we apply the product rule for it
The product rule is given by \[\dfrac{d}{{dx}}\left( {u.v} \right) = u.\dfrac{{dv}}{{dx}} + v.\dfrac{{du}}{{dx}}\], therefore we have
\[ \Rightarrow \cos x.\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dz}}} \right) + \dfrac{{dy}}{{dz}}.\dfrac{d}{{dx}}(\cos x)\]------- (1)
As we know that \[z = \sin x\], on differentiating z we have
\[ \Rightarrow dz = \cos x.dx\]
Substituting this in the (1)
\[ \Rightarrow \cos x.\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{\cos x.dx}}} \right) + \dfrac{{dy}}{{\cos x.dx}}.\dfrac{d}{{dx}}(\cos x)\]
Using the reciprocal trigonometric ratios we have
\[ \Rightarrow \cos x.\dfrac{d}{{dx}}\left( {\sec x\dfrac{{dy}}{{dx}}} \right) + \sec x\dfrac{{dy}}{{dx}}.\dfrac{d}{{dx}}(\cos x)\]
On differentiating we have
\[ \Rightarrow \cos x.\left( {\sec x.\dfrac{{{d^2}y}}{{d{x^2}}} + \sec x.\tan x\dfrac{{dy}}{{dx}}} \right) + \sec x\dfrac{{dy}}{{dx}}.( - \sin x)\]
On simplifying the trigonometric ratios.
\[ \Rightarrow \cos x.\sec x.\dfrac{{{d^2}y}}{{d{x^2}}} + \cos x.\sec x.\tan x\dfrac{{dy}}{{dx}} - \sin x\sec x\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow \cos x.\dfrac{1}{{\cos x}}.\dfrac{{{d^2}y}}{{d{x^2}}} + \cos x.\dfrac{1}{{\cos x}}.\dfrac{{\sin x}}{{\cos x}}\dfrac{{dy}}{{dx}} - \sin x.\dfrac{1}{{\cos x}}\dfrac{{dy}}{{dx}}\]
Cancelling the terms which gets cancels, we have
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + \tan x\dfrac{{dy}}{{dx}} - \tan x\dfrac{{dy}}{{dx}}\]
On further simplifying we have
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\]
Hence this the derivative.
We can also solve this by another method
Method 2:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\]-------- (2)
As we know that \[z = \sin x\], on differentiating z we have
\[ \Rightarrow dz = \cos x.dx\]
Substituting this in (2)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{\cos x.dx}}} \right)\]
On simplifying we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right)\]
On differentiating we have
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\]
Therefore \[\dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right) = \dfrac{{{d^2}y}}{{d{x^2}}}\]
So, the correct answer is “\[\dfrac{{{d^2}y}}{{d{x^2}}}\]”.
Note: We can also solve this by another method
Method 2:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right)\]-------- (2)
As we know that \[z = \sin x\], on differentiating z we have
\[ \Rightarrow dz = \cos x.dx\]
Substituting this in (2)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{\cos x.dx}}} \right)\]
On simplifying we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right)\]
On differentiating we have
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}\]
Therefore \[\dfrac{d}{{dx}}\left( {\cos x\dfrac{{dy}}{{dz}}} \right) = \dfrac{{{d^2}y}}{{d{x^2}}}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Which prominent US inventor was known as the Wizard class 12 social science CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

How is democracy better than other forms of government class 12 social science CBSE

