Answer
Verified
480.3k+ views
Hint: Using definition of binary operation.
(i) On ${Z^ + }$ , the binary operation$ * $ defined by $a * b = a - b$ is not a binary operation
Because if the points are taken as $\left( {1,2} \right)$ , then by applying binary operation, it becomes $1 - 2 = - 1$ and $ - 1$ does not belong to${Z^ + }$ .
(ii) On ${Z^ + }$ , the binary operation$ * $ defined by$a * b = ab$ is a binary operation because each element in ${Z^ + }$ has a unique element in ${Z^ + }$ .
(iii) On $R$ , the binary operation$ * $ defined by $a * b = a{b^2}$ is a binary operation because each element in $R$ has a unique element in $R$ .
(iv) On ${Z^ + }$ , the binary operation $ * $ defined by $a * b = \left| {a - b} \right|$ is a binary operation because each element in ${Z^ + }$ has a unique element in ${Z^ + }$ .
(v) On ${Z^ + }$ , the binary operation $ * $ defined by $a * b = a$ is a binary operation because each element in \[{Z^ + }\] has a unique element in \[{Z^ + }\] .
Note: - In order to prove that a given operation is not a binary operation just as in case I, we just need to show an example satisfying that the operation is not binary. But in all other cases, or to show that the given operation is binary we need to consider all the different possibilities and also some exceptional cases.
(i) On ${Z^ + }$ , the binary operation$ * $ defined by $a * b = a - b$ is not a binary operation
Because if the points are taken as $\left( {1,2} \right)$ , then by applying binary operation, it becomes $1 - 2 = - 1$ and $ - 1$ does not belong to${Z^ + }$ .
(ii) On ${Z^ + }$ , the binary operation$ * $ defined by$a * b = ab$ is a binary operation because each element in ${Z^ + }$ has a unique element in ${Z^ + }$ .
(iii) On $R$ , the binary operation$ * $ defined by $a * b = a{b^2}$ is a binary operation because each element in $R$ has a unique element in $R$ .
(iv) On ${Z^ + }$ , the binary operation $ * $ defined by $a * b = \left| {a - b} \right|$ is a binary operation because each element in ${Z^ + }$ has a unique element in ${Z^ + }$ .
(v) On ${Z^ + }$ , the binary operation $ * $ defined by $a * b = a$ is a binary operation because each element in \[{Z^ + }\] has a unique element in \[{Z^ + }\] .
Note: - In order to prove that a given operation is not a binary operation just as in case I, we just need to show an example satisfying that the operation is not binary. But in all other cases, or to show that the given operation is binary we need to consider all the different possibilities and also some exceptional cases.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE