
Determine the value of $k$ so that following linear equations have no solutions:
$
\left( {3k + 1} \right)x + 3y - 2 = 0 \\
\left( {{k^2} + 1} \right)x + \left( {k - 2} \right)y - 5 = 0 \\
$
Answer
620.7k+ views
Hint: Convert the equations into matrix format and Equate the determinant $D$ of this matrix to zero using this to calculate the value of k to reach the answer.
Complete step-by-step answer:
Given system of equations is:
$
\left( {3k + 1} \right)x + 3y - 2 = 0 \\
\left( {{k^2} + 1} \right)x + \left( {k - 2} \right)y - 5 = 0 \\
$
Convert these equations into matrix format
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]$
The system of equations has no solutions if the value of determinant $\left( D \right) = 0$, and at least one of the determinant $\left( {{D_1}{\text{ and }}{{\text{D}}_2}} \right)$ is non-zero.
So, determinant $\left( D \right)$ of the above system of equations is given below
So, ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right|$
Now put this determinant equal to zero and calculate the value of $k$ for which the system of equations has no solution.
$
\Rightarrow {\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right| = 0 \\
\Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) - \left( {{k^2} + 1} \right)3 = 0 \\
\Rightarrow 3{k^2} - 6k + k - 2 - 3{k^2} - 3 = 0 \\
\Rightarrow - 5k - 5 = 0 \\
\Rightarrow k = - 1 \\
$
So, for $k = - 1$, the value of determinant is zero.
Now calculate the value of determinant ${{\text{D}}_1}$ at this value of $k$, to ensure that the condition is satisfied for no solution. The value of determinant ${{\text{D}}_1}$ should not be equal to zero.
If first column is replaced with column $\left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]{\text{ }}$, then the determinant D is converted into determinant ${{\text{D}}_1}$, according to Cramer Rule.
$ \Rightarrow {{\text{D}}_1} = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( {k - 2} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( { - 1 - 2} \right)}
\end{array}} \right| = 2\left( { - 1 - 2} \right) - 3 \times 5 = - 6 - 15 = - 21 \ne 0$
Therefore the system of equations has no solution for $ k = - 1$.
Note: Whenever we face such types of questions the key concept we have to remember is that put determinant ${\text{D = 0}}$, then calculate the value of $k$, then at this value of $k$ if the value of determinant ${{\text{D}}_1}{\text{ or }}{{\text{D}}_2}$ is non-zero then the system of equations has no solution at this value of $k$.
Complete step-by-step answer:
Given system of equations is:
$
\left( {3k + 1} \right)x + 3y - 2 = 0 \\
\left( {{k^2} + 1} \right)x + \left( {k - 2} \right)y - 5 = 0 \\
$
Convert these equations into matrix format
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]$
The system of equations has no solutions if the value of determinant $\left( D \right) = 0$, and at least one of the determinant $\left( {{D_1}{\text{ and }}{{\text{D}}_2}} \right)$ is non-zero.
So, determinant $\left( D \right)$ of the above system of equations is given below
So, ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right|$
Now put this determinant equal to zero and calculate the value of $k$ for which the system of equations has no solution.
$
\Rightarrow {\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right| = 0 \\
\Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) - \left( {{k^2} + 1} \right)3 = 0 \\
\Rightarrow 3{k^2} - 6k + k - 2 - 3{k^2} - 3 = 0 \\
\Rightarrow - 5k - 5 = 0 \\
\Rightarrow k = - 1 \\
$
So, for $k = - 1$, the value of determinant is zero.
Now calculate the value of determinant ${{\text{D}}_1}$ at this value of $k$, to ensure that the condition is satisfied for no solution. The value of determinant ${{\text{D}}_1}$ should not be equal to zero.
If first column is replaced with column $\left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]{\text{ }}$, then the determinant D is converted into determinant ${{\text{D}}_1}$, according to Cramer Rule.
$ \Rightarrow {{\text{D}}_1} = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( {k - 2} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( { - 1 - 2} \right)}
\end{array}} \right| = 2\left( { - 1 - 2} \right) - 3 \times 5 = - 6 - 15 = - 21 \ne 0$
Therefore the system of equations has no solution for $ k = - 1$.
Note: Whenever we face such types of questions the key concept we have to remember is that put determinant ${\text{D = 0}}$, then calculate the value of $k$, then at this value of $k$ if the value of determinant ${{\text{D}}_1}{\text{ or }}{{\text{D}}_2}$ is non-zero then the system of equations has no solution at this value of $k$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

