Answer
Verified
492.6k+ views
Hint: Convert the equations into matrix format and Equate the determinant $D$ of this matrix to zero using this to calculate the value of k to reach the answer.
Complete step-by-step answer:
Given system of equations is:
$
\left( {3k + 1} \right)x + 3y - 2 = 0 \\
\left( {{k^2} + 1} \right)x + \left( {k - 2} \right)y - 5 = 0 \\
$
Convert these equations into matrix format
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]$
The system of equations has no solutions if the value of determinant $\left( D \right) = 0$, and at least one of the determinant $\left( {{D_1}{\text{ and }}{{\text{D}}_2}} \right)$ is non-zero.
So, determinant $\left( D \right)$ of the above system of equations is given below
So, ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right|$
Now put this determinant equal to zero and calculate the value of $k$ for which the system of equations has no solution.
$
\Rightarrow {\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right| = 0 \\
\Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) - \left( {{k^2} + 1} \right)3 = 0 \\
\Rightarrow 3{k^2} - 6k + k - 2 - 3{k^2} - 3 = 0 \\
\Rightarrow - 5k - 5 = 0 \\
\Rightarrow k = - 1 \\
$
So, for $k = - 1$, the value of determinant is zero.
Now calculate the value of determinant ${{\text{D}}_1}$ at this value of $k$, to ensure that the condition is satisfied for no solution. The value of determinant ${{\text{D}}_1}$ should not be equal to zero.
If first column is replaced with column $\left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]{\text{ }}$, then the determinant D is converted into determinant ${{\text{D}}_1}$, according to Cramer Rule.
$ \Rightarrow {{\text{D}}_1} = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( {k - 2} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( { - 1 - 2} \right)}
\end{array}} \right| = 2\left( { - 1 - 2} \right) - 3 \times 5 = - 6 - 15 = - 21 \ne 0$
Therefore the system of equations has no solution for $ k = - 1$.
Note: Whenever we face such types of questions the key concept we have to remember is that put determinant ${\text{D = 0}}$, then calculate the value of $k$, then at this value of $k$ if the value of determinant ${{\text{D}}_1}{\text{ or }}{{\text{D}}_2}$ is non-zero then the system of equations has no solution at this value of $k$.
Complete step-by-step answer:
Given system of equations is:
$
\left( {3k + 1} \right)x + 3y - 2 = 0 \\
\left( {{k^2} + 1} \right)x + \left( {k - 2} \right)y - 5 = 0 \\
$
Convert these equations into matrix format
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]$
The system of equations has no solutions if the value of determinant $\left( D \right) = 0$, and at least one of the determinant $\left( {{D_1}{\text{ and }}{{\text{D}}_2}} \right)$ is non-zero.
So, determinant $\left( D \right)$ of the above system of equations is given below
So, ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right|$
Now put this determinant equal to zero and calculate the value of $k$ for which the system of equations has no solution.
$
\Rightarrow {\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right| = 0 \\
\Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) - \left( {{k^2} + 1} \right)3 = 0 \\
\Rightarrow 3{k^2} - 6k + k - 2 - 3{k^2} - 3 = 0 \\
\Rightarrow - 5k - 5 = 0 \\
\Rightarrow k = - 1 \\
$
So, for $k = - 1$, the value of determinant is zero.
Now calculate the value of determinant ${{\text{D}}_1}$ at this value of $k$, to ensure that the condition is satisfied for no solution. The value of determinant ${{\text{D}}_1}$ should not be equal to zero.
If first column is replaced with column $\left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]{\text{ }}$, then the determinant D is converted into determinant ${{\text{D}}_1}$, according to Cramer Rule.
$ \Rightarrow {{\text{D}}_1} = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( {k - 2} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( { - 1 - 2} \right)}
\end{array}} \right| = 2\left( { - 1 - 2} \right) - 3 \times 5 = - 6 - 15 = - 21 \ne 0$
Therefore the system of equations has no solution for $ k = - 1$.
Note: Whenever we face such types of questions the key concept we have to remember is that put determinant ${\text{D = 0}}$, then calculate the value of $k$, then at this value of $k$ if the value of determinant ${{\text{D}}_1}{\text{ or }}{{\text{D}}_2}$ is non-zero then the system of equations has no solution at this value of $k$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE