
Determine the electrical potential energy for a system of three point charges.
Answer
506.7k+ views
Hint: Electrical potential energy, charge at a point is defined as the amount of work done, bringing the charge from infinity to that point. It is denoted by $U$. The difference in potential energy between two points in an electric field is called electrical potential energy.
Complete step by step answer:
First we calculate the difference between two point charges, later we can discuss about three point charges. Electric potential energy of the system for two point charges. Suppose assume that two charges ${q_1}$ and ${q_2}$ are situated at a distance of $r$.The electrical potential energy is:
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r}$
When charge ${q_1}$is bought from infinity to certain position, no work is done. There is no other charge to repel each other. Now, the position of charge is ${q_2}$
${V_1} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}}}{r}$ this equation is from electric field,
Therefore the work done bringing the charge ${q_2}$ to infinity to its own position
$W = U = {V_1}{q_2}$
In the above equation we are substituting the ${V_1}$ then we get,
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r} \to \left( 1 \right)$
Both the charges are in the same nature, the potential energy is positive for unlike charges it will be negative.
Electrical potential energy of a system of three charges: Consider three charges ${q_1}, {q_2}, {q_3}$, the charges ${q_2}$ and ${q_3}$ initially at finite distance from the charge ${q_1}$ work done bringing charge ${q_2}$ from infinity to point,
${W_{12}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} \to \left( 2 \right)$
Work done bringing charges ${q_3}$ then we get,
${W_{123}} = {V_1}{q_3} + {V_2}{q_3} \\
\Rightarrow {W_{123}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \to \left( 3 \right) \\ $
Therefore the total work done is, work done by two point charges and work done by three point charges, here we get the total work done at some infinite point
$W = {W_{12}} + {W_{123}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}}\left[ {\dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{{{q_2}{q_3}}}{{{r_{23}}}}} \right] \\ $
Total work done in electrical potential energy is stored in the form of potential energy,
The electrical potential energy for a system of three point charges is,
$\therefore U = \dfrac{1}{2}\left[ {\dfrac{1}{{4\pi {e_ \circ }}}\sum\limits_{allpairs} {\dfrac{{{q_i}{q_j}}}{{{r_{ij}}}}} } \right] \to \left( 4 \right)$
In the above equation (4) we have multiplied $\dfrac{1}{2}$ because each pair comes two times.
Note:The electric potential is charged at a point to bring charge from infinity point to certain point; according to the above data we have calculated the electrical potential charge for two points and for three points. Same method is used to calculate the electrical potential at three points.
Complete step by step answer:
First we calculate the difference between two point charges, later we can discuss about three point charges. Electric potential energy of the system for two point charges. Suppose assume that two charges ${q_1}$ and ${q_2}$ are situated at a distance of $r$.The electrical potential energy is:
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r}$
When charge ${q_1}$is bought from infinity to certain position, no work is done. There is no other charge to repel each other. Now, the position of charge is ${q_2}$
${V_1} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}}}{r}$ this equation is from electric field,
Therefore the work done bringing the charge ${q_2}$ to infinity to its own position
$W = U = {V_1}{q_2}$
In the above equation we are substituting the ${V_1}$ then we get,
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r} \to \left( 1 \right)$
Both the charges are in the same nature, the potential energy is positive for unlike charges it will be negative.
Electrical potential energy of a system of three charges: Consider three charges ${q_1}, {q_2}, {q_3}$, the charges ${q_2}$ and ${q_3}$ initially at finite distance from the charge ${q_1}$ work done bringing charge ${q_2}$ from infinity to point,
${W_{12}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} \to \left( 2 \right)$
Work done bringing charges ${q_3}$ then we get,
${W_{123}} = {V_1}{q_3} + {V_2}{q_3} \\
\Rightarrow {W_{123}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \to \left( 3 \right) \\ $
Therefore the total work done is, work done by two point charges and work done by three point charges, here we get the total work done at some infinite point
$W = {W_{12}} + {W_{123}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}}\left[ {\dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{{{q_2}{q_3}}}{{{r_{23}}}}} \right] \\ $
Total work done in electrical potential energy is stored in the form of potential energy,
The electrical potential energy for a system of three point charges is,
$\therefore U = \dfrac{1}{2}\left[ {\dfrac{1}{{4\pi {e_ \circ }}}\sum\limits_{allpairs} {\dfrac{{{q_i}{q_j}}}{{{r_{ij}}}}} } \right] \to \left( 4 \right)$
In the above equation (4) we have multiplied $\dfrac{1}{2}$ because each pair comes two times.
Note:The electric potential is charged at a point to bring charge from infinity point to certain point; according to the above data we have calculated the electrical potential charge for two points and for three points. Same method is used to calculate the electrical potential at three points.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

