Determine the electrical potential energy for a system of three point charges.
Answer
283.2k+ views
Hint: Electrical potential energy, charge at a point is defined as the amount of work done, bringing the charge from infinity to that point. It is denoted by $U$. The difference in potential energy between two points in an electric field is called electrical potential energy.
Complete step by step answer:
First we calculate the difference between two point charges, later we can discuss about three point charges. Electric potential energy of the system for two point charges. Suppose assume that two charges ${q_1}$ and ${q_2}$ are situated at a distance of $r$.The electrical potential energy is:
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r}$
When charge ${q_1}$is bought from infinity to certain position, no work is done. There is no other charge to repel each other. Now, the position of charge is ${q_2}$
${V_1} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}}}{r}$ this equation is from electric field,
Therefore the work done bringing the charge ${q_2}$ to infinity to its own position
$W = U = {V_1}{q_2}$
In the above equation we are substituting the ${V_1}$ then we get,
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r} \to \left( 1 \right)$
Both the charges are in the same nature, the potential energy is positive for unlike charges it will be negative.
Electrical potential energy of a system of three charges: Consider three charges ${q_1}, {q_2}, {q_3}$, the charges ${q_2}$ and ${q_3}$ initially at finite distance from the charge ${q_1}$ work done bringing charge ${q_2}$ from infinity to point,
${W_{12}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} \to \left( 2 \right)$
Work done bringing charges ${q_3}$ then we get,
${W_{123}} = {V_1}{q_3} + {V_2}{q_3} \\
\Rightarrow {W_{123}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \to \left( 3 \right) \\ $
Therefore the total work done is, work done by two point charges and work done by three point charges, here we get the total work done at some infinite point
$W = {W_{12}} + {W_{123}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}}\left[ {\dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{{{q_2}{q_3}}}{{{r_{23}}}}} \right] \\ $
Total work done in electrical potential energy is stored in the form of potential energy,
The electrical potential energy for a system of three point charges is,
$\therefore U = \dfrac{1}{2}\left[ {\dfrac{1}{{4\pi {e_ \circ }}}\sum\limits_{allpairs} {\dfrac{{{q_i}{q_j}}}{{{r_{ij}}}}} } \right] \to \left( 4 \right)$
In the above equation (4) we have multiplied $\dfrac{1}{2}$ because each pair comes two times.
Note:The electric potential is charged at a point to bring charge from infinity point to certain point; according to the above data we have calculated the electrical potential charge for two points and for three points. Same method is used to calculate the electrical potential at three points.
Complete step by step answer:
First we calculate the difference between two point charges, later we can discuss about three point charges. Electric potential energy of the system for two point charges. Suppose assume that two charges ${q_1}$ and ${q_2}$ are situated at a distance of $r$.The electrical potential energy is:
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r}$
When charge ${q_1}$is bought from infinity to certain position, no work is done. There is no other charge to repel each other. Now, the position of charge is ${q_2}$
${V_1} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}}}{r}$ this equation is from electric field,
Therefore the work done bringing the charge ${q_2}$ to infinity to its own position
$W = U = {V_1}{q_2}$
In the above equation we are substituting the ${V_1}$ then we get,
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r} \to \left( 1 \right)$
Both the charges are in the same nature, the potential energy is positive for unlike charges it will be negative.
Electrical potential energy of a system of three charges: Consider three charges ${q_1}, {q_2}, {q_3}$, the charges ${q_2}$ and ${q_3}$ initially at finite distance from the charge ${q_1}$ work done bringing charge ${q_2}$ from infinity to point,
${W_{12}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} \to \left( 2 \right)$
Work done bringing charges ${q_3}$ then we get,
${W_{123}} = {V_1}{q_3} + {V_2}{q_3} \\
\Rightarrow {W_{123}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \to \left( 3 \right) \\ $
Therefore the total work done is, work done by two point charges and work done by three point charges, here we get the total work done at some infinite point
$W = {W_{12}} + {W_{123}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}}\left[ {\dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{{{q_2}{q_3}}}{{{r_{23}}}}} \right] \\ $
Total work done in electrical potential energy is stored in the form of potential energy,
The electrical potential energy for a system of three point charges is,
$\therefore U = \dfrac{1}{2}\left[ {\dfrac{1}{{4\pi {e_ \circ }}}\sum\limits_{allpairs} {\dfrac{{{q_i}{q_j}}}{{{r_{ij}}}}} } \right] \to \left( 4 \right)$
In the above equation (4) we have multiplied $\dfrac{1}{2}$ because each pair comes two times.
Note:The electric potential is charged at a point to bring charge from infinity point to certain point; according to the above data we have calculated the electrical potential charge for two points and for three points. Same method is used to calculate the electrical potential at three points.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
