Determine the electrical potential energy for a system of three point charges.
Last updated date: 27th Mar 2023
•
Total views: 207.3k
•
Views today: 5.84k
Answer
207.3k+ views
Hint: Electrical potential energy, charge at a point is defined as the amount of work done, bringing the charge from infinity to that point. It is denoted by $U$. The difference in potential energy between two points in an electric field is called electrical potential energy.
Complete step by step answer:
First we calculate the difference between two point charges, later we can discuss about three point charges. Electric potential energy of the system for two point charges. Suppose assume that two charges ${q_1}$ and ${q_2}$ are situated at a distance of $r$.The electrical potential energy is:
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r}$
When charge ${q_1}$is bought from infinity to certain position, no work is done. There is no other charge to repel each other. Now, the position of charge is ${q_2}$
${V_1} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}}}{r}$ this equation is from electric field,
Therefore the work done bringing the charge ${q_2}$ to infinity to its own position
$W = U = {V_1}{q_2}$
In the above equation we are substituting the ${V_1}$ then we get,
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r} \to \left( 1 \right)$
Both the charges are in the same nature, the potential energy is positive for unlike charges it will be negative.
Electrical potential energy of a system of three charges: Consider three charges ${q_1}, {q_2}, {q_3}$, the charges ${q_2}$ and ${q_3}$ initially at finite distance from the charge ${q_1}$ work done bringing charge ${q_2}$ from infinity to point,
${W_{12}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} \to \left( 2 \right)$
Work done bringing charges ${q_3}$ then we get,
${W_{123}} = {V_1}{q_3} + {V_2}{q_3} \\
\Rightarrow {W_{123}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \to \left( 3 \right) \\ $
Therefore the total work done is, work done by two point charges and work done by three point charges, here we get the total work done at some infinite point
$W = {W_{12}} + {W_{123}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}}\left[ {\dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{{{q_2}{q_3}}}{{{r_{23}}}}} \right] \\ $
Total work done in electrical potential energy is stored in the form of potential energy,
The electrical potential energy for a system of three point charges is,
$\therefore U = \dfrac{1}{2}\left[ {\dfrac{1}{{4\pi {e_ \circ }}}\sum\limits_{allpairs} {\dfrac{{{q_i}{q_j}}}{{{r_{ij}}}}} } \right] \to \left( 4 \right)$
In the above equation (4) we have multiplied $\dfrac{1}{2}$ because each pair comes two times.
Note:The electric potential is charged at a point to bring charge from infinity point to certain point; according to the above data we have calculated the electrical potential charge for two points and for three points. Same method is used to calculate the electrical potential at three points.
Complete step by step answer:
First we calculate the difference between two point charges, later we can discuss about three point charges. Electric potential energy of the system for two point charges. Suppose assume that two charges ${q_1}$ and ${q_2}$ are situated at a distance of $r$.The electrical potential energy is:
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r}$
When charge ${q_1}$is bought from infinity to certain position, no work is done. There is no other charge to repel each other. Now, the position of charge is ${q_2}$
${V_1} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}}}{r}$ this equation is from electric field,
Therefore the work done bringing the charge ${q_2}$ to infinity to its own position
$W = U = {V_1}{q_2}$
In the above equation we are substituting the ${V_1}$ then we get,
$U = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{r} \to \left( 1 \right)$
Both the charges are in the same nature, the potential energy is positive for unlike charges it will be negative.
Electrical potential energy of a system of three charges: Consider three charges ${q_1}, {q_2}, {q_3}$, the charges ${q_2}$ and ${q_3}$ initially at finite distance from the charge ${q_1}$ work done bringing charge ${q_2}$ from infinity to point,
${W_{12}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} \to \left( 2 \right)$
Work done bringing charges ${q_3}$ then we get,
${W_{123}} = {V_1}{q_3} + {V_2}{q_3} \\
\Rightarrow {W_{123}} = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \to \left( 3 \right) \\ $
Therefore the total work done is, work done by two point charges and work done by three point charges, here we get the total work done at some infinite point
$W = {W_{12}} + {W_{123}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{1}{{4\pi {e_ \circ }}} \times \dfrac{{{q_2}{q_3}}}{{{r_{23}}}} \\
\Rightarrow W = \dfrac{1}{{4\pi {e_ \circ }}}\left[ {\dfrac{{{q_1}{q_2}}}{{{r_{12}}}} + \dfrac{{{q_1}{q_3}}}{{{r_{31}}}} + \dfrac{{{q_2}{q_3}}}{{{r_{23}}}}} \right] \\ $
Total work done in electrical potential energy is stored in the form of potential energy,
The electrical potential energy for a system of three point charges is,
$\therefore U = \dfrac{1}{2}\left[ {\dfrac{1}{{4\pi {e_ \circ }}}\sum\limits_{allpairs} {\dfrac{{{q_i}{q_j}}}{{{r_{ij}}}}} } \right] \to \left( 4 \right)$
In the above equation (4) we have multiplied $\dfrac{1}{2}$ because each pair comes two times.
Note:The electric potential is charged at a point to bring charge from infinity point to certain point; according to the above data we have calculated the electrical potential charge for two points and for three points. Same method is used to calculate the electrical potential at three points.
Recently Updated Pages
Most eubacterial antibiotics are obtained from A Rhizobium class 12 biology NEET_UG

Salamin bioinsecticides have been extracted from A class 12 biology NEET_UG

Which of the following statements regarding Baculoviruses class 12 biology NEET_UG

Sewage or municipal sewer pipes should not be directly class 12 biology NEET_UG

Sewage purification is performed by A Microbes B Fertilisers class 12 biology NEET_UG

Enzyme immobilisation is Aconversion of an active enzyme class 12 biology NEET_UG

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
