
Define second’s pendulum. Hence calculate the length of second’s pendulum.
Answer
217.2k+ views
Hint: Second’s pendulum takes one second to move from its mean position to one of its extreme position and use the expression of the time period of a simple pendulum.
Complete answer:
A second’s pendulum is a type of a simple pendulum whose time period of vibration is two seconds, that is it takes one second to move from a mean position to its extreme position and one second to move to another extreme point.
We can also define as the bob of the second’s pendulum takes exactly one second while oscillating through the mean position.
Let us consider a bob of mass $m$ is suspended by a weightless, inflexible and inelastic string of length $l$ from a rigid support, and then the expression for the time period of the simple pendulum is,
$T = 2\pi \sqrt {\dfrac{l}{g}} $ ... (1)
Here, $g$ is the acceleration due to gravity and $l$ is the length of the pendulum.
We know that the time period of the vibration of the second's pendulum is $T = 2\;{\rm{s}}$.
Let us rewrite the equation (1),
$l = g{\left( {\dfrac{T}{{2\pi }}} \right)^2}$
Now we substitute the values $T$ as $2\;{\rm{s}}$ and $g$ as $9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}$ in the above expression, we get,
$
l = 9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}{\left( {\dfrac{{2\;{\rm{s}}}}{{2\pi }}} \right)^2}\\
= 0.993\;{\rm{m}}
$
or
$l = 99.3\;{\rm{cm}}$
Hence, the length of the second’s pendulum is 99.3 cm.
Additional information: The frequency of the second’s pendulum is equal to $\dfrac{1}{2}\;{\rm{Hz}}$.
Note: The assumptions we take while obtaining the expression of time period are:
1. Air resistance is negligible.
2. The bob of the pendulum swings in a perfect plane.
Complete answer:
A second’s pendulum is a type of a simple pendulum whose time period of vibration is two seconds, that is it takes one second to move from a mean position to its extreme position and one second to move to another extreme point.
We can also define as the bob of the second’s pendulum takes exactly one second while oscillating through the mean position.
Let us consider a bob of mass $m$ is suspended by a weightless, inflexible and inelastic string of length $l$ from a rigid support, and then the expression for the time period of the simple pendulum is,
$T = 2\pi \sqrt {\dfrac{l}{g}} $ ... (1)
Here, $g$ is the acceleration due to gravity and $l$ is the length of the pendulum.
We know that the time period of the vibration of the second's pendulum is $T = 2\;{\rm{s}}$.
Let us rewrite the equation (1),
$l = g{\left( {\dfrac{T}{{2\pi }}} \right)^2}$
Now we substitute the values $T$ as $2\;{\rm{s}}$ and $g$ as $9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}$ in the above expression, we get,
$
l = 9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}{\left( {\dfrac{{2\;{\rm{s}}}}{{2\pi }}} \right)^2}\\
= 0.993\;{\rm{m}}
$
or
$l = 99.3\;{\rm{cm}}$
Hence, the length of the second’s pendulum is 99.3 cm.
Additional information: The frequency of the second’s pendulum is equal to $\dfrac{1}{2}\;{\rm{Hz}}$.
Note: The assumptions we take while obtaining the expression of time period are:
1. Air resistance is negligible.
2. The bob of the pendulum swings in a perfect plane.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

