
Define angular S.H.M and obtain its differential equation.
Answer
232.8k+ views
Hint: In this question, we need to determine the differential equation of the simple harmonic motion of a particle. For this, we will consider a body in the simple harmonic motion (SHM) and derive the differential equation of the same by following the general laws of motion.
Complete step by step solution:
In this question, S.H.M stands for simple harmonic function. We know that angular simple harmonic motion is defined as the to and fro motion of a body about a central point or orientation is called angular simple harmonic motion. When a body is at equilibrium and is disturbed by a small amount of torque then it performs angular simple harmonic motion.
Now differential equation of the simple harmonic function is given as: consider a metallic disc hanging from rigid support when twisted, it performs an oscillatory motion for which the restoring torque acting upon it, for angular displacement \[\theta \] is;
\[\tau \propto - \theta \]
\[\therefore \tau = - c\theta ...\left( 1 \right)\]
Where the constant of proportionality \[c\] is the restoring torque per unit angular displacement.
Now, \[I\] is the moment of inertia of the disc and the torque acting on the disc is given by
\[\tau = I\alpha ...\left( 2 \right)\]
Where \[\alpha \]is the angular acceleration
Now from the equation \[\left( 1 \right)\]and \[\left( 2 \right)\], we get
\[I\alpha = - c\theta \]
\[\therefore I\dfrac{{{d^2}\theta }}{{d{t^2}}} + c\theta = 0\]
where \[\alpha = \dfrac{{{d^2}\theta }}{{d{t^2}}}\]
Hence, the differential equation of S.H.M is \[I\dfrac{{{d^2}\theta }}{{d{t^2}}} + c\theta = 0\]where \[\alpha = \dfrac{{{d^2}\theta }}{{d{t^2}}}\]
Note:The acceleration of the particle must be in proportion with the negative displacement governed by the particle. The restoring force in the linear simple harmonic motion is proportional to the negative displacement of the particle.
Complete step by step solution:
In this question, S.H.M stands for simple harmonic function. We know that angular simple harmonic motion is defined as the to and fro motion of a body about a central point or orientation is called angular simple harmonic motion. When a body is at equilibrium and is disturbed by a small amount of torque then it performs angular simple harmonic motion.
Now differential equation of the simple harmonic function is given as: consider a metallic disc hanging from rigid support when twisted, it performs an oscillatory motion for which the restoring torque acting upon it, for angular displacement \[\theta \] is;
\[\tau \propto - \theta \]
\[\therefore \tau = - c\theta ...\left( 1 \right)\]
Where the constant of proportionality \[c\] is the restoring torque per unit angular displacement.
Now, \[I\] is the moment of inertia of the disc and the torque acting on the disc is given by
\[\tau = I\alpha ...\left( 2 \right)\]
Where \[\alpha \]is the angular acceleration
Now from the equation \[\left( 1 \right)\]and \[\left( 2 \right)\], we get
\[I\alpha = - c\theta \]
\[\therefore I\dfrac{{{d^2}\theta }}{{d{t^2}}} + c\theta = 0\]
where \[\alpha = \dfrac{{{d^2}\theta }}{{d{t^2}}}\]
Hence, the differential equation of S.H.M is \[I\dfrac{{{d^2}\theta }}{{d{t^2}}} + c\theta = 0\]where \[\alpha = \dfrac{{{d^2}\theta }}{{d{t^2}}}\]
Note:The acceleration of the particle must be in proportion with the negative displacement governed by the particle. The restoring force in the linear simple harmonic motion is proportional to the negative displacement of the particle.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

