Answer
Verified
496.2k+ views
Hint- Assume a $3 \times 4$ matrix
$ = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}
\end{array}} \right]$
and find the value of every element by substituting the suitable values of i & j.
$\left( i \right){a_{ij}} = \dfrac{1}{2}\left| { - 3i + j} \right|$, in $3 \times 4$ matrix, number of rows and column are 3 and 4 respectively.
So, $i$ is for row and $j$ is for column, therefore
$i = 1,2,3{\text{ ;}} j = 1,2,3,4$
As you know modulus of any negative number is positive for examples$\left| { - a} \right| = a$, so, we use this property to evaluate the values of $\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)$
$
{a_{11}} = \dfrac{1}{2}\left| { - 3 + 1} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\
{a_{12}} = \dfrac{1}{2}\left| { - 3 + 2} \right| = \dfrac{{\left| { - 1} \right|}}{2} = \dfrac{1}{2} \\
{a_{13}} = \dfrac{1}{2}\left| { - 3 + 3} \right| = \dfrac{{\left| 0 \right|}}{2} = \dfrac{0}{2} = 0 \\
{a_{14}} = \dfrac{1}{2}\left| { - 3 + 4} \right| = \dfrac{{\left| 1 \right|}}{2} = \dfrac{1}{2} \\
{a_{21}} = \dfrac{1}{2}\left| { - 3 \times 2 + 1} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\
{a_{22}} = \dfrac{1}{2}\left| { - 3 \times 2 + 2} \right| = \dfrac{{\left| { - 4} \right|}}{2} = \dfrac{4}{2} = 2 \\
{a_{23}} = \dfrac{1}{2}\left| { - 3 \times 2 + 3} \right| = \dfrac{{\left| { - 3} \right|}}{2} = \dfrac{3}{2} \\
{a_{24}} = \dfrac{1}{2}\left| { - 3 \times 2 + 4} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\
{a_{31}} = \dfrac{1}{2}\left| { - 3 \times 3 + 1} \right| = \dfrac{{\left| { - 8} \right|}}{2} = \dfrac{8}{2} = 4 \\
{a_{32}} = \dfrac{1}{2}\left| { - 3 \times 3 + 2} \right| = \dfrac{{\left| { - 7} \right|}}{2} = \dfrac{7}{2} \\
{a_{33}} = \dfrac{1}{2}\left| { - 3 \times 3 + 3} \right| = \dfrac{{\left| { - 6} \right|}}{2} = \dfrac{6}{2} = 3 \\
{a_{34}} = \dfrac{1}{2}\left| { - 3 \times 3 + 4} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\
$
So, the required $3 \times 4$ matrix is,
$ = \left[ {\begin{array}{*{20}{c}}
1&{\dfrac{1}{2}}&0&{\dfrac{1}{2}} \\
{\dfrac{5}{2}}&2&{\dfrac{3}{2}}&1 \\
4&{\dfrac{7}{2}}&3&{\dfrac{5}{2}}
\end{array}} \right]$
$\left( {ii} \right){a_{ij}} = 2i - j$
${a_{ij}} = 2i - j$, in $3 \times 4$ matrix, number of rows and columns are 3 and 4 respectively.
So, $i$ is for row and $j$ is for column, therefore
$i = 1,2,3{\text{ ;}}j = 1,2,3,4$
Now, evaluate the values of $\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)$
$
{a_{11}} = 2 \times 1 - 1 = 1 \\
{a_{12}} = 2 \times 1 - 2 = 0 \\
{a_{13}} = 2 \times 1 - 3 = - 1 \\
{a_{14}} = 2 \times 1 - 4 = - 2 \\
{a_{21}} = 2 \times 2 - 1 = 3 \\
{a_{22}} = 2 \times 2 - 2 = 2 \\
{a_{23}} = 2 \times 2 - 3 = 1 \\
{a_{24}} = 2 \times 2 - 4 = 0 \\
{a_{31}} = 2 \times 3 - 1 = 5 \\
{a_{32}} = 2 \times 3 - 2 = 4 \\
{a_{33}} = 2 \times 3 - 3 = 3 \\
{a_{34}} = 2 \times 3 - 4 = 2 \\
$
So, the required $3 \times 4$ matrix
$ = \left[ {\begin{array}{*{20}{c}}
1&0&{ - 1}&{ - 2} \\
3&2&1&0 \\
5&4&3&2
\end{array}} \right]$
So, these are the required matrices.
Note: In these types of questions always remember that in an $m \times n$ matrix, the number of rows and columns are m and n respectively. Calculate all the elemental values of the matrix according to the given condition.
$ = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}
\end{array}} \right]$
and find the value of every element by substituting the suitable values of i & j.
$\left( i \right){a_{ij}} = \dfrac{1}{2}\left| { - 3i + j} \right|$, in $3 \times 4$ matrix, number of rows and column are 3 and 4 respectively.
So, $i$ is for row and $j$ is for column, therefore
$i = 1,2,3{\text{ ;}} j = 1,2,3,4$
As you know modulus of any negative number is positive for examples$\left| { - a} \right| = a$, so, we use this property to evaluate the values of $\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)$
$
{a_{11}} = \dfrac{1}{2}\left| { - 3 + 1} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\
{a_{12}} = \dfrac{1}{2}\left| { - 3 + 2} \right| = \dfrac{{\left| { - 1} \right|}}{2} = \dfrac{1}{2} \\
{a_{13}} = \dfrac{1}{2}\left| { - 3 + 3} \right| = \dfrac{{\left| 0 \right|}}{2} = \dfrac{0}{2} = 0 \\
{a_{14}} = \dfrac{1}{2}\left| { - 3 + 4} \right| = \dfrac{{\left| 1 \right|}}{2} = \dfrac{1}{2} \\
{a_{21}} = \dfrac{1}{2}\left| { - 3 \times 2 + 1} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\
{a_{22}} = \dfrac{1}{2}\left| { - 3 \times 2 + 2} \right| = \dfrac{{\left| { - 4} \right|}}{2} = \dfrac{4}{2} = 2 \\
{a_{23}} = \dfrac{1}{2}\left| { - 3 \times 2 + 3} \right| = \dfrac{{\left| { - 3} \right|}}{2} = \dfrac{3}{2} \\
{a_{24}} = \dfrac{1}{2}\left| { - 3 \times 2 + 4} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\
{a_{31}} = \dfrac{1}{2}\left| { - 3 \times 3 + 1} \right| = \dfrac{{\left| { - 8} \right|}}{2} = \dfrac{8}{2} = 4 \\
{a_{32}} = \dfrac{1}{2}\left| { - 3 \times 3 + 2} \right| = \dfrac{{\left| { - 7} \right|}}{2} = \dfrac{7}{2} \\
{a_{33}} = \dfrac{1}{2}\left| { - 3 \times 3 + 3} \right| = \dfrac{{\left| { - 6} \right|}}{2} = \dfrac{6}{2} = 3 \\
{a_{34}} = \dfrac{1}{2}\left| { - 3 \times 3 + 4} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\
$
So, the required $3 \times 4$ matrix is,
$ = \left[ {\begin{array}{*{20}{c}}
1&{\dfrac{1}{2}}&0&{\dfrac{1}{2}} \\
{\dfrac{5}{2}}&2&{\dfrac{3}{2}}&1 \\
4&{\dfrac{7}{2}}&3&{\dfrac{5}{2}}
\end{array}} \right]$
$\left( {ii} \right){a_{ij}} = 2i - j$
${a_{ij}} = 2i - j$, in $3 \times 4$ matrix, number of rows and columns are 3 and 4 respectively.
So, $i$ is for row and $j$ is for column, therefore
$i = 1,2,3{\text{ ;}}j = 1,2,3,4$
Now, evaluate the values of $\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)$
$
{a_{11}} = 2 \times 1 - 1 = 1 \\
{a_{12}} = 2 \times 1 - 2 = 0 \\
{a_{13}} = 2 \times 1 - 3 = - 1 \\
{a_{14}} = 2 \times 1 - 4 = - 2 \\
{a_{21}} = 2 \times 2 - 1 = 3 \\
{a_{22}} = 2 \times 2 - 2 = 2 \\
{a_{23}} = 2 \times 2 - 3 = 1 \\
{a_{24}} = 2 \times 2 - 4 = 0 \\
{a_{31}} = 2 \times 3 - 1 = 5 \\
{a_{32}} = 2 \times 3 - 2 = 4 \\
{a_{33}} = 2 \times 3 - 3 = 3 \\
{a_{34}} = 2 \times 3 - 4 = 2 \\
$
So, the required $3 \times 4$ matrix
$ = \left[ {\begin{array}{*{20}{c}}
1&0&{ - 1}&{ - 2} \\
3&2&1&0 \\
5&4&3&2
\end{array}} \right]$
So, these are the required matrices.
Note: In these types of questions always remember that in an $m \times n$ matrix, the number of rows and columns are m and n respectively. Calculate all the elemental values of the matrix according to the given condition.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it