
Construct $(3 \times 2)$ the matrix whose elements are given by ${a_n} = \dfrac{1}{2}\left[ {i - 3j} \right]$
Answer
503.4k+ views
Hint: Matrix is a set of numbers arranged in rows and columns so as to form a rectangular array. The number of $\text{Row}\times \text{Columns}$ are called the element or entries of the matrix. The number of rows and columns of the matrix is called the order or its dimension of the matrix. Only a zero matrix has zero rank.
Complete step-by-step solution:
Given,
${a_{ij}} = \dfrac{1}{2}\left[ {i - 3j} \right]$
The order of the matrix is $[3 \times 2]$
This means number of rows, $i = 3$
Number of columns, $j = 2$
The matrix will be
\[\therefore {a_{3 \times 2}} = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}} \\
{{a_{31}}}&{{a_{32}}}
\end{array}} \right]\]
Now the to solve for the matrix
As given
${a_{ij}} = \dfrac{1}{2}\left[ {i - 3j} \right]$
Put
$ \Rightarrow {a_{11}} = \dfrac{1}{2}\left[ {1 - 3 \times 1} \right]$
\[ \Rightarrow {a_{11}} = \dfrac{1}{2}\left( { - 2} \right)\]
\[ \Rightarrow {a_{11}} = - 1\]
$ \Rightarrow {a_{12}} = \dfrac{1}{2}\left[ {1 - 3 \times 2} \right]$
\[ \Rightarrow {a_{12}} = \dfrac{1}{2}\left( { - 5} \right)\]
\[ \Rightarrow {a_{12}} = - \dfrac{5}{2}\]
$ \Rightarrow {a_{21}} = \dfrac{1}{2}\left[ {2 - 3 \times 1} \right]$
\[ \Rightarrow {a_{21}} = \dfrac{1}{2}\left( { - 1} \right)\]
\[ \Rightarrow {a_{21}} = - \dfrac{1}{2}\]
$ \Rightarrow {a_{22}} = \dfrac{1}{2}\left[ {2 - 3 \times 2} \right]$
\[ \Rightarrow {a_{22}} = \dfrac{1}{2}\left( { - 4} \right)\]
\[ \Rightarrow {a_{22}} = - 2\]
$ \Rightarrow {a_{31}} = \dfrac{1}{2}\left[ {3 - 3 \times 1} \right]$
\[ \Rightarrow {a_{31}} = \dfrac{1}{2}\left( 0 \right)\]
\[ \Rightarrow {a_{31}} = 0\]
$ \Rightarrow {a_{32}} = \dfrac{1}{2}\left[ {3 - 3 \times 2} \right]$
\[ \Rightarrow {a_{32}} = \dfrac{1}{2}\left( { - 3} \right)\]
\[ \Rightarrow {a_{32}} = - \dfrac{3}{2}\]
As we know
$\therefore {a_{3 \times 2}} = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}} \\
{{a_{31}}}&{{a_{32}}}
\end{array}} \right]$
Put these values in matrix and we get
\[\therefore {a_{3 \times 2}} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - \dfrac{5}{2}} \\
{ - \dfrac{1}{2}}&{ - 2} \\
0&{ - \dfrac{3}{2}}
\end{array}} \right]\]
Note: When we do multiplication in a matrix we have to keep things in mind: the number of columns of the first matrix is equal to the rows of the second matrix. And the result we get the same number of rows in the first matrix and the column in the second matrix. Determinant is the type of square matrix.
Complete step-by-step solution:
Given,
${a_{ij}} = \dfrac{1}{2}\left[ {i - 3j} \right]$
The order of the matrix is $[3 \times 2]$
This means number of rows, $i = 3$
Number of columns, $j = 2$
The matrix will be
\[\therefore {a_{3 \times 2}} = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}} \\
{{a_{31}}}&{{a_{32}}}
\end{array}} \right]\]
Now the to solve for the matrix
As given
${a_{ij}} = \dfrac{1}{2}\left[ {i - 3j} \right]$
Put
$ \Rightarrow {a_{11}} = \dfrac{1}{2}\left[ {1 - 3 \times 1} \right]$
\[ \Rightarrow {a_{11}} = \dfrac{1}{2}\left( { - 2} \right)\]
\[ \Rightarrow {a_{11}} = - 1\]
$ \Rightarrow {a_{12}} = \dfrac{1}{2}\left[ {1 - 3 \times 2} \right]$
\[ \Rightarrow {a_{12}} = \dfrac{1}{2}\left( { - 5} \right)\]
\[ \Rightarrow {a_{12}} = - \dfrac{5}{2}\]
$ \Rightarrow {a_{21}} = \dfrac{1}{2}\left[ {2 - 3 \times 1} \right]$
\[ \Rightarrow {a_{21}} = \dfrac{1}{2}\left( { - 1} \right)\]
\[ \Rightarrow {a_{21}} = - \dfrac{1}{2}\]
$ \Rightarrow {a_{22}} = \dfrac{1}{2}\left[ {2 - 3 \times 2} \right]$
\[ \Rightarrow {a_{22}} = \dfrac{1}{2}\left( { - 4} \right)\]
\[ \Rightarrow {a_{22}} = - 2\]
$ \Rightarrow {a_{31}} = \dfrac{1}{2}\left[ {3 - 3 \times 1} \right]$
\[ \Rightarrow {a_{31}} = \dfrac{1}{2}\left( 0 \right)\]
\[ \Rightarrow {a_{31}} = 0\]
$ \Rightarrow {a_{32}} = \dfrac{1}{2}\left[ {3 - 3 \times 2} \right]$
\[ \Rightarrow {a_{32}} = \dfrac{1}{2}\left( { - 3} \right)\]
\[ \Rightarrow {a_{32}} = - \dfrac{3}{2}\]
As we know
$\therefore {a_{3 \times 2}} = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}} \\
{{a_{31}}}&{{a_{32}}}
\end{array}} \right]$
Put these values in matrix and we get
\[\therefore {a_{3 \times 2}} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - \dfrac{5}{2}} \\
{ - \dfrac{1}{2}}&{ - 2} \\
0&{ - \dfrac{3}{2}}
\end{array}} \right]\]
Note: When we do multiplication in a matrix we have to keep things in mind: the number of columns of the first matrix is equal to the rows of the second matrix. And the result we get the same number of rows in the first matrix and the column in the second matrix. Determinant is the type of square matrix.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

