Answer
Verified
493.5k+ views
Hint: Take the LHS of the expression given. By using the formulas of \[\cos 2\theta \]and\[\cos (A-B)\], simplify the expression. Use the projection formula of the triangle to solve the rest. In the projection formula, the length of any side of a triangle is equal to the sum of the projections of the other 2 sides.
Complete step-by-step answer:
We have been given the expression,
\[{{a}^{2}}\cos 2B+{{b}^{2}}\cos 2A+2ab\cos (A-B)={{c}^{2}}.....(1)\]
We know the basic trigonometric formula,
\[\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \]
It can be written as
\[\cos 2\theta ={{\cos }^{2}}\theta -(1-{{\cos }^{2}}\theta )={{\cos }^{2}}\theta -1+{{\cos }^{2}}\theta =2{{\cos }^{2}}\theta -1\].
We know that \[\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \\
\end{align}\]
The expression of \[\cos (A-B)=\cos A\cos B+\sin A\sin B.\]
Now let us substitute the values of \[\cos 2\theta \]and\[\cos (A-B)\] in LHS of equation (1).
\[\begin{align}
& \cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\
& \therefore \cos 2B={{\cos }^{2}}B-{{\sin }^{2}}B \\
& \cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A \\
\end{align}\]
\[\begin{align}
& LHS={{a}^{2}}\cos 2B+{{b}^{2}}\cos 2A+2ab\cos (A-B) \\
& ={{a}^{2}}({{\cos }^{2}}B-si{{n}^{2}}B)+{{b}^{2}}({{\cos }^{2}}A-{{\sin }^{2}}A)+2ab\left[ \cos A\cos B+\sin A\sin B \right] \\
\end{align}\]
Let us open the brackets and simplify it.
\[\begin{align}
& ={{a}^{2}}{{\cos }^{2}}B-{{a}^{2}}{{\sin }^{2}}B+{{b}^{2}}{{\cos }^{2}}A-{{b}^{2}}{{\sin }^{2}}A+2ab.\cos A.\cos B+2ab.\sin A.\sin B \\
& =({{a}^{2}}{{\cos }^{2}}B+{{b}^{2}}{{\cos }^{2}}A+2ab.\cos A.cosB)-({{a}^{2}}{{\sin }^{2}}B+{{b}^{2}}{{\sin }^{2}}A-2ab.\sin A.\sin B) \\
\end{align}\]
They are of the form \[{{a}^{2}}+2ab+{{b}^{2}}={{(a+b)}^{2}}.\]
\[{{(a\cos B+b\cos A)}^{2}}-{{(a\sin B-b\sin A)}^{2}}\]
By projection formulae, the length of any side of a triangle is equal to the sum of the projections of the other two sides.
\[\therefore a\cos B+b\cos A=C\]for any triangle ABC.
\[\begin{align}
& {{(a\cos B+b\cos A)}^{2}}-{{(a\sin nB+b\sin A)}^{2}} \\
& ={{c}^{2}}-{{(a\sin B-b\sin A)}^{2}} \\
\end{align}\]
By sine formula, we know that \[\dfrac{\sin A}{a}=\dfrac{sinB}{b}\]
Cross multiplying the above expression, we get,
\[\begin{align}
& b\sin A=a\sin B \\
& ={{c}^{2}}-{{(a\sin B-b\sin A)}^{2}} \\
& ={{c}^{2}}-{{(a\sin B-a\sin B)}^{2}} \\
& ={{c}^{2}}-0={{c}^{2}} \\
\end{align}\]
Therefore, we proved that,
\[{{a}^{2}}\cos 2B+{{b}^{2}}\cos 2A+2ab\cos (A-B)={{c}^{2}}\].
Thus the statement is true.
Option A is the correct answer.
Note: Here we use the cosine formulae to solve the expression. You should remember the formulae so that solving questions like these would become easy. We used the projection formula which is an important concept, to solve the expression.
\[c=a\cos B+b\cos A\].
Complete step-by-step answer:
We have been given the expression,
\[{{a}^{2}}\cos 2B+{{b}^{2}}\cos 2A+2ab\cos (A-B)={{c}^{2}}.....(1)\]
We know the basic trigonometric formula,
\[\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \]
It can be written as
\[\cos 2\theta ={{\cos }^{2}}\theta -(1-{{\cos }^{2}}\theta )={{\cos }^{2}}\theta -1+{{\cos }^{2}}\theta =2{{\cos }^{2}}\theta -1\].
We know that \[\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \\
\end{align}\]
The expression of \[\cos (A-B)=\cos A\cos B+\sin A\sin B.\]
Now let us substitute the values of \[\cos 2\theta \]and\[\cos (A-B)\] in LHS of equation (1).
\[\begin{align}
& \cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\
& \therefore \cos 2B={{\cos }^{2}}B-{{\sin }^{2}}B \\
& \cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A \\
\end{align}\]
\[\begin{align}
& LHS={{a}^{2}}\cos 2B+{{b}^{2}}\cos 2A+2ab\cos (A-B) \\
& ={{a}^{2}}({{\cos }^{2}}B-si{{n}^{2}}B)+{{b}^{2}}({{\cos }^{2}}A-{{\sin }^{2}}A)+2ab\left[ \cos A\cos B+\sin A\sin B \right] \\
\end{align}\]
Let us open the brackets and simplify it.
\[\begin{align}
& ={{a}^{2}}{{\cos }^{2}}B-{{a}^{2}}{{\sin }^{2}}B+{{b}^{2}}{{\cos }^{2}}A-{{b}^{2}}{{\sin }^{2}}A+2ab.\cos A.\cos B+2ab.\sin A.\sin B \\
& =({{a}^{2}}{{\cos }^{2}}B+{{b}^{2}}{{\cos }^{2}}A+2ab.\cos A.cosB)-({{a}^{2}}{{\sin }^{2}}B+{{b}^{2}}{{\sin }^{2}}A-2ab.\sin A.\sin B) \\
\end{align}\]
They are of the form \[{{a}^{2}}+2ab+{{b}^{2}}={{(a+b)}^{2}}.\]
\[{{(a\cos B+b\cos A)}^{2}}-{{(a\sin B-b\sin A)}^{2}}\]
By projection formulae, the length of any side of a triangle is equal to the sum of the projections of the other two sides.
\[\therefore a\cos B+b\cos A=C\]for any triangle ABC.
\[\begin{align}
& {{(a\cos B+b\cos A)}^{2}}-{{(a\sin nB+b\sin A)}^{2}} \\
& ={{c}^{2}}-{{(a\sin B-b\sin A)}^{2}} \\
\end{align}\]
By sine formula, we know that \[\dfrac{\sin A}{a}=\dfrac{sinB}{b}\]
Cross multiplying the above expression, we get,
\[\begin{align}
& b\sin A=a\sin B \\
& ={{c}^{2}}-{{(a\sin B-b\sin A)}^{2}} \\
& ={{c}^{2}}-{{(a\sin B-a\sin B)}^{2}} \\
& ={{c}^{2}}-0={{c}^{2}} \\
\end{align}\]
Therefore, we proved that,
\[{{a}^{2}}\cos 2B+{{b}^{2}}\cos 2A+2ab\cos (A-B)={{c}^{2}}\].
Thus the statement is true.
Option A is the correct answer.
Note: Here we use the cosine formulae to solve the expression. You should remember the formulae so that solving questions like these would become easy. We used the projection formula which is an important concept, to solve the expression.
\[c=a\cos B+b\cos A\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it