Answer
Verified
388.8k+ views
Hint: In order to solve this question, we are firstly going to find the equivalent resistance for the given circuit by telling whether the two resistances are in series combination or the parallel one. After that the total voltage of the circuit is taken along with equivalent resistance to find the electric current.
Formula used: The formula for the equivalent resistance of the resistors in parallel is given by the formula:
\[{R_{eq}} = {R_1} + {R_2}\]
The electric current in the circuit shown is given by the formula
\[i = \dfrac{V}{{{R_{eq}}}}\]
Where \[V\] is the voltage of the circuit as given.
Complete step by step answer:
The amount of the current passing through the resistor of resistance \[10\Omega \] will also pass through the resistor of the resistance \[5\Omega \]. Thus, this means that the two resistors are connected in series with each other.
We know that the formula for the equivalent resistance of the resistors in parallel is given by the formula:
\[{R_{eq}} = {R_1} + {R_2}\]
Therefore, their equivalent resistance is equal to
\[{R_{eq}} = 10\Omega + 5\Omega = 15\Omega \]
Thus, the electric current in the circuit shown is given by the formula
\[i = \dfrac{V}{{{R_{eq}}}}\]
Where, \[V\] is the voltage of the circuit as shown .
Thus, putting the values to get the electric current.
\[i = \dfrac{{7.5}}{{15}} = 0.5A\]
Note: It is important to note that in a circuit that consists of the resistors in series they have the same amount of the current passing through all the resistors and the voltage is different. While for the resistors in parallel, the current passing through all is different and the voltages are the same.
Formula used: The formula for the equivalent resistance of the resistors in parallel is given by the formula:
\[{R_{eq}} = {R_1} + {R_2}\]
The electric current in the circuit shown is given by the formula
\[i = \dfrac{V}{{{R_{eq}}}}\]
Where \[V\] is the voltage of the circuit as given.
Complete step by step answer:
The amount of the current passing through the resistor of resistance \[10\Omega \] will also pass through the resistor of the resistance \[5\Omega \]. Thus, this means that the two resistors are connected in series with each other.
We know that the formula for the equivalent resistance of the resistors in parallel is given by the formula:
\[{R_{eq}} = {R_1} + {R_2}\]
Therefore, their equivalent resistance is equal to
\[{R_{eq}} = 10\Omega + 5\Omega = 15\Omega \]
Thus, the electric current in the circuit shown is given by the formula
\[i = \dfrac{V}{{{R_{eq}}}}\]
Where, \[V\] is the voltage of the circuit as shown .
Thus, putting the values to get the electric current.
\[i = \dfrac{{7.5}}{{15}} = 0.5A\]
Note: It is important to note that in a circuit that consists of the resistors in series they have the same amount of the current passing through all the resistors and the voltage is different. While for the resistors in parallel, the current passing through all is different and the voltages are the same.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE