
Calculate the amount of oxalic acid used to prepare $ 100{\text{ }}ml $ of $ 0.1N $ and $ 0.1M $ solution.
Answer
506.7k+ views
Hint: To solve this question, we will focus on the concept of morality and normality. Molarity $ (M) $ indicates the number of moles of solute per litre of solution (moles/Litre). Normality $ (N) $ is defined as the number of mole equivalents per litre of solution.
Complete answer:
First let’s calculate the molarity of oxalic acid. For it, we will need the molecular weight of oxalic acid. The molecular weight can be calculated by a molecular formula which is $ {H_2}{C_2}{O_4}.2{H_2}O $ . We will multiply the molar mass of each element with the number of each element present in the molecule to obtain the molecular weight. Hence,
Molecular weight $ = 1 \times 2 + 2 \times 12 + 4 \times 16 + 2 \times (1 \times 2 + 16) $
$ = 2 + 24 + 64 + 2 \times (18) $
$ = 2 + 24 + 64 + 36 $
$ = 126g/mol $
Since the $ n $ factor is $ 2 $ , the equivalent weight becomes $ 63g/mol $ .
Molarity $ = \dfrac{{{\text{weight}} \times 1000}}{{{\text{molecular weight }} \times {\text{ volume}}}} $
$ 0.1 = \dfrac{{a \times 1000}}{{126 \times 100}} $
Here, $ a \to $ the weight required for $ 0.1M $ solution.
On further solving,
$ a = 1.26g $ (in $ 100mL $ )
Similarly,
Normality $ = \dfrac{{{\text{weight}} \times 1000}}{{{\text{equivalent weight }} \times {\text{ volume}}}} $
$ 0.1 = \dfrac{{b \times 1000}}{{63 \times 100}} $
Here, $ b \to $ the weight required for $ 0.1N $ solution.
On further solving,
$ b = 0.63g $ (in $ 100mL $ )
Hence, the amount of oxalic acid required to prepare $ 100{\text{ }}ml $ solution of $ 0.1N $ is $ 0.63g $ and $ 0.1M $ is $ 1.26g $ .
Additional Information:
Sometimes, in place of morality, chemists prefer to use normality because often $ 1 $ mole of acid does not completely neutralize $ 1 $ mole of base. Hence, in order to have a one-to-one relationship between acids and bases, many chemists prefer to express the concentration of acids and bases in normality.
Note:
The normal concentration of a solution or normality is always equal to or greater than the molar concentration or molarity of a solution. The normal concentration can be directly calculated by multiplying the molar concentration by the number of equivalents per mole of solute.
Complete answer:
First let’s calculate the molarity of oxalic acid. For it, we will need the molecular weight of oxalic acid. The molecular weight can be calculated by a molecular formula which is $ {H_2}{C_2}{O_4}.2{H_2}O $ . We will multiply the molar mass of each element with the number of each element present in the molecule to obtain the molecular weight. Hence,
Molecular weight $ = 1 \times 2 + 2 \times 12 + 4 \times 16 + 2 \times (1 \times 2 + 16) $
$ = 2 + 24 + 64 + 2 \times (18) $
$ = 2 + 24 + 64 + 36 $
$ = 126g/mol $
Since the $ n $ factor is $ 2 $ , the equivalent weight becomes $ 63g/mol $ .
Molarity $ = \dfrac{{{\text{weight}} \times 1000}}{{{\text{molecular weight }} \times {\text{ volume}}}} $
$ 0.1 = \dfrac{{a \times 1000}}{{126 \times 100}} $
Here, $ a \to $ the weight required for $ 0.1M $ solution.
On further solving,
$ a = 1.26g $ (in $ 100mL $ )
Similarly,
Normality $ = \dfrac{{{\text{weight}} \times 1000}}{{{\text{equivalent weight }} \times {\text{ volume}}}} $
$ 0.1 = \dfrac{{b \times 1000}}{{63 \times 100}} $
Here, $ b \to $ the weight required for $ 0.1N $ solution.
On further solving,
$ b = 0.63g $ (in $ 100mL $ )
Hence, the amount of oxalic acid required to prepare $ 100{\text{ }}ml $ solution of $ 0.1N $ is $ 0.63g $ and $ 0.1M $ is $ 1.26g $ .
Additional Information:
Sometimes, in place of morality, chemists prefer to use normality because often $ 1 $ mole of acid does not completely neutralize $ 1 $ mole of base. Hence, in order to have a one-to-one relationship between acids and bases, many chemists prefer to express the concentration of acids and bases in normality.
Note:
The normal concentration of a solution or normality is always equal to or greater than the molar concentration or molarity of a solution. The normal concentration can be directly calculated by multiplying the molar concentration by the number of equivalents per mole of solute.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

