Calculate the amount of oxalic acid used to prepare $ 100{\text{ }}ml $ of $ 0.1N $ and $ 0.1M $ solution.
Answer
281.4k+ views
Hint: To solve this question, we will focus on the concept of morality and normality. Molarity $ (M) $ indicates the number of moles of solute per litre of solution (moles/Litre). Normality $ (N) $ is defined as the number of mole equivalents per litre of solution.
Complete answer:
First let’s calculate the molarity of oxalic acid. For it, we will need the molecular weight of oxalic acid. The molecular weight can be calculated by a molecular formula which is $ {H_2}{C_2}{O_4}.2{H_2}O $ . We will multiply the molar mass of each element with the number of each element present in the molecule to obtain the molecular weight. Hence,
Molecular weight $ = 1 \times 2 + 2 \times 12 + 4 \times 16 + 2 \times (1 \times 2 + 16) $
$ = 2 + 24 + 64 + 2 \times (18) $
$ = 2 + 24 + 64 + 36 $
$ = 126g/mol $
Since the $ n $ factor is $ 2 $ , the equivalent weight becomes $ 63g/mol $ .
Molarity $ = \dfrac{{{\text{weight}} \times 1000}}{{{\text{molecular weight }} \times {\text{ volume}}}} $
$ 0.1 = \dfrac{{a \times 1000}}{{126 \times 100}} $
Here, $ a \to $ the weight required for $ 0.1M $ solution.
On further solving,
$ a = 1.26g $ (in $ 100mL $ )
Similarly,
Normality $ = \dfrac{{{\text{weight}} \times 1000}}{{{\text{equivalent weight }} \times {\text{ volume}}}} $
$ 0.1 = \dfrac{{b \times 1000}}{{63 \times 100}} $
Here, $ b \to $ the weight required for $ 0.1N $ solution.
On further solving,
$ b = 0.63g $ (in $ 100mL $ )
Hence, the amount of oxalic acid required to prepare $ 100{\text{ }}ml $ solution of $ 0.1N $ is $ 0.63g $ and $ 0.1M $ is $ 1.26g $ .
Additional Information:
Sometimes, in place of morality, chemists prefer to use normality because often $ 1 $ mole of acid does not completely neutralize $ 1 $ mole of base. Hence, in order to have a one-to-one relationship between acids and bases, many chemists prefer to express the concentration of acids and bases in normality.
Note:
The normal concentration of a solution or normality is always equal to or greater than the molar concentration or molarity of a solution. The normal concentration can be directly calculated by multiplying the molar concentration by the number of equivalents per mole of solute.
Complete answer:
First let’s calculate the molarity of oxalic acid. For it, we will need the molecular weight of oxalic acid. The molecular weight can be calculated by a molecular formula which is $ {H_2}{C_2}{O_4}.2{H_2}O $ . We will multiply the molar mass of each element with the number of each element present in the molecule to obtain the molecular weight. Hence,
Molecular weight $ = 1 \times 2 + 2 \times 12 + 4 \times 16 + 2 \times (1 \times 2 + 16) $
$ = 2 + 24 + 64 + 2 \times (18) $
$ = 2 + 24 + 64 + 36 $
$ = 126g/mol $
Since the $ n $ factor is $ 2 $ , the equivalent weight becomes $ 63g/mol $ .
Molarity $ = \dfrac{{{\text{weight}} \times 1000}}{{{\text{molecular weight }} \times {\text{ volume}}}} $
$ 0.1 = \dfrac{{a \times 1000}}{{126 \times 100}} $
Here, $ a \to $ the weight required for $ 0.1M $ solution.
On further solving,
$ a = 1.26g $ (in $ 100mL $ )
Similarly,
Normality $ = \dfrac{{{\text{weight}} \times 1000}}{{{\text{equivalent weight }} \times {\text{ volume}}}} $
$ 0.1 = \dfrac{{b \times 1000}}{{63 \times 100}} $
Here, $ b \to $ the weight required for $ 0.1N $ solution.
On further solving,
$ b = 0.63g $ (in $ 100mL $ )
Hence, the amount of oxalic acid required to prepare $ 100{\text{ }}ml $ solution of $ 0.1N $ is $ 0.63g $ and $ 0.1M $ is $ 1.26g $ .
Additional Information:
Sometimes, in place of morality, chemists prefer to use normality because often $ 1 $ mole of acid does not completely neutralize $ 1 $ mole of base. Hence, in order to have a one-to-one relationship between acids and bases, many chemists prefer to express the concentration of acids and bases in normality.
Note:
The normal concentration of a solution or normality is always equal to or greater than the molar concentration or molarity of a solution. The normal concentration can be directly calculated by multiplying the molar concentration by the number of equivalents per mole of solute.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
