Answer
Verified
477k+ views
Hint: We will try to show the two triangles \[\Delta {{O}_{1}}AB\] and \[\Delta {{O}_{2}}AB\] congruent using ‘SSS’ type of triangle congruence.
Given that two circles \[{{C}_{1}}\]and \[{{C}_{2}}\] with center \[{{O}_{1}}\]and \[{{O}_{2}}\] intersect each other at points \[A\]and \[B\].
Also, \[{{O}_{1}}{{O}_{2}}\] intersects \[AB\] at \[M\].
Then, we have to show that \[\Delta {{O}_{1}}A{{O}_{2}}\cong \Delta {{O}_{1}}B{{O}_{2}}\]
Let us assume that the radius of the circle \[{{C}_{1}}\]be \[r\] and the radius of the circle \[{{C}_{2}}\] be \[s\].
Proof:
In \[\Delta {{O}_{1}}A{{O}_{2}}\] and \[\Delta {{O}_{1}}B{{O}_{2}}\], we have
\[{{O}_{1}}A={{O}_{1}}B.....\left( i \right)\]
Both are radii of the same circle \[{{C}_{1}}\].
\[\Rightarrow {{O}_{2}}A={{O}_{2}}B.....\left( ii \right)\]
Both are radii of the same circle \[{{C}_{2}}\].
Also, \[{{O}_{1}}{{O}_{2}}={{O}_{2}}{{O}_{1}}....\left( iii \right)\]
Common sides of \[\Delta {{O}_{1}}A{{O}_{2}}\] and \[\Delta {{O}_{1}}B{{O}_{2}}\]
So, from equation \[\left( i \right),\left( ii \right)\]and\[\left( iii \right)\], we get both triangles \[\Delta {{O}_{1}}A{{O}_{2}}\]and \[\Delta {{O}_{1}}B{{O}_{2}}\] are congruent with each other by ‘SSS’ type if triangle congruence.
Or,\[\Delta {{O}_{1}}A{{O}_{2}}\cong \Delta {{O}_{1}}B{{O}_{2}}\] by SSS type of triangle congruence.
(Here, ‘SSS’ type means side – side – side type of triangle congruence)
SSS – Theorem
Side - side - side postulate (SSS) states that two triangles are congruent if three sides of one triangle are congruent to the corresponding sides of the other triangle.
Here, from \[\Delta ABC\] and \[\Delta DEF\], we can say that
\[AB=DF....\left( a \right)\]
\[AC=DE....\left( b \right)\]
\[BC=EF....\left( c \right)\]
So, from equation \[\left( a \right),\left( b \right)\] and \[\left( c \right)\], we have \[\Delta ABC\cong \Delta DEF\] by SSS – type triangle congruence.
Note: Visualize the geometry first before attempting the question. Make a clear diagram of the required question which reduces the probability of error in your solution. Using the SSS theorem, we prove the congruence of the required triangles to prove what is given.
Given that two circles \[{{C}_{1}}\]and \[{{C}_{2}}\] with center \[{{O}_{1}}\]and \[{{O}_{2}}\] intersect each other at points \[A\]and \[B\].
Also, \[{{O}_{1}}{{O}_{2}}\] intersects \[AB\] at \[M\].
Then, we have to show that \[\Delta {{O}_{1}}A{{O}_{2}}\cong \Delta {{O}_{1}}B{{O}_{2}}\]
Let us assume that the radius of the circle \[{{C}_{1}}\]be \[r\] and the radius of the circle \[{{C}_{2}}\] be \[s\].
Proof:
In \[\Delta {{O}_{1}}A{{O}_{2}}\] and \[\Delta {{O}_{1}}B{{O}_{2}}\], we have
\[{{O}_{1}}A={{O}_{1}}B.....\left( i \right)\]
Both are radii of the same circle \[{{C}_{1}}\].
\[\Rightarrow {{O}_{2}}A={{O}_{2}}B.....\left( ii \right)\]
Both are radii of the same circle \[{{C}_{2}}\].
Also, \[{{O}_{1}}{{O}_{2}}={{O}_{2}}{{O}_{1}}....\left( iii \right)\]
Common sides of \[\Delta {{O}_{1}}A{{O}_{2}}\] and \[\Delta {{O}_{1}}B{{O}_{2}}\]
So, from equation \[\left( i \right),\left( ii \right)\]and\[\left( iii \right)\], we get both triangles \[\Delta {{O}_{1}}A{{O}_{2}}\]and \[\Delta {{O}_{1}}B{{O}_{2}}\] are congruent with each other by ‘SSS’ type if triangle congruence.
Or,\[\Delta {{O}_{1}}A{{O}_{2}}\cong \Delta {{O}_{1}}B{{O}_{2}}\] by SSS type of triangle congruence.
(Here, ‘SSS’ type means side – side – side type of triangle congruence)
SSS – Theorem
Side - side - side postulate (SSS) states that two triangles are congruent if three sides of one triangle are congruent to the corresponding sides of the other triangle.
Here, from \[\Delta ABC\] and \[\Delta DEF\], we can say that
\[AB=DF....\left( a \right)\]
\[AC=DE....\left( b \right)\]
\[BC=EF....\left( c \right)\]
So, from equation \[\left( a \right),\left( b \right)\] and \[\left( c \right)\], we have \[\Delta ABC\cong \Delta DEF\] by SSS – type triangle congruence.
Note: Visualize the geometry first before attempting the question. Make a clear diagram of the required question which reduces the probability of error in your solution. Using the SSS theorem, we prove the congruence of the required triangles to prove what is given.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE