Area of a rectangle having vertices A, B, C, D with position vectors $ - \hat i + \dfrac{1}{2}\hat j + 4\hat k,{\text{ }}\hat i + \dfrac{1}{2}\hat j + 4\hat k,{\text{ }}\hat i - \dfrac{1}{2}\hat j + 4\hat k,{\text{ }} - \hat i - \dfrac{1}{2}\hat j + 4\hat k$ respectively is,
$
a.{\text{ }}\dfrac{1}{2} \\
b.{\text{ }}1 \\
c.{\text{ }}2 \\
d.{\text{ }}4 \\
$
Answer
383.1k+ views
Hint: In this question first find out the position vectors of the adjacent sides, later on apply the property of cross product, so, using these concepts we can reach the solution of the question.
Position vectors of the rectangle having vertices A, B, C, D are given as
$
\vec O\vec A = - \hat i + \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec B = \hat i + \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec C = \hat i - \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec D = - \hat i - \dfrac{1}{2}\hat j + 4\hat k \\
$
The adjacent sides of rectangle ABCD is given as (AB, BC)
So, the position vectors of these sides is given as
$\left( {\vec A\vec B} \right) = \left( {\vec O\vec B} \right) - \left( {\vec O\vec A} \right)$
Now substitute the above values in above equation we have,
$
\Rightarrow \left( {\vec A\vec B} \right) = \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( { - \hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\
\Rightarrow \left( {\vec A\vec B} \right) = \left( {1 + 1} \right)\hat i + \left( {\dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = 2\hat i \\
$
And, $\left( {\vec B\vec C} \right) = \left( {\vec O\vec C} \right) - \left( {\vec O\vec B} \right)$
Now substitute the above values in above equation we have,
$
\Rightarrow \left( {\vec B\vec C} \right) = \left( {\hat i - \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\
\Rightarrow \left( {\vec B\vec C} \right) = \left( {1 - 1} \right)\hat i + \left( { - \dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = - \hat j \\
$
Now we all know that the area of the rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is $\left| {\left( {\vec a \times \vec b} \right)} \right|$.
So the area of the rectangle having adjacent sides $\left( {\vec A\vec B} \right)$ and $\left( {\vec B\vec C} \right)$ is $\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right|$
Now first calculate cross product of these vectors we have
$\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right) = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\vec j}&{\vec k} \\
2&0&0 \\
0&{ - 1}&0
\end{array}} \right| = \left( {0 - 0} \right)\hat i - \left( {0 - 0} \right)\vec j + \left( { - 2 - 0} \right)\vec k = - 2\vec k$
Now the modulus of above cross product is
$\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right| = \left| { - 2\hat k} \right| = \sqrt {{{\left( { - 2} \right)}^2}} = 2$
So, the area of the rectangle is 2 sq. units.
Hence, option (c) is correct.
Note: In such types of questions the key concept we have to remember is that always recall that the area of rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is$\left| {\left( {\vec a \times \vec b} \right)} \right|$, so first calculate the adjacent sides of the rectangle as above then apply this concept, we will get the required area of the rectangle.
Position vectors of the rectangle having vertices A, B, C, D are given as
$
\vec O\vec A = - \hat i + \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec B = \hat i + \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec C = \hat i - \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec D = - \hat i - \dfrac{1}{2}\hat j + 4\hat k \\
$
The adjacent sides of rectangle ABCD is given as (AB, BC)
So, the position vectors of these sides is given as
$\left( {\vec A\vec B} \right) = \left( {\vec O\vec B} \right) - \left( {\vec O\vec A} \right)$
Now substitute the above values in above equation we have,
$
\Rightarrow \left( {\vec A\vec B} \right) = \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( { - \hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\
\Rightarrow \left( {\vec A\vec B} \right) = \left( {1 + 1} \right)\hat i + \left( {\dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = 2\hat i \\
$
And, $\left( {\vec B\vec C} \right) = \left( {\vec O\vec C} \right) - \left( {\vec O\vec B} \right)$
Now substitute the above values in above equation we have,
$
\Rightarrow \left( {\vec B\vec C} \right) = \left( {\hat i - \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\
\Rightarrow \left( {\vec B\vec C} \right) = \left( {1 - 1} \right)\hat i + \left( { - \dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = - \hat j \\
$
Now we all know that the area of the rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is $\left| {\left( {\vec a \times \vec b} \right)} \right|$.
So the area of the rectangle having adjacent sides $\left( {\vec A\vec B} \right)$ and $\left( {\vec B\vec C} \right)$ is $\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right|$
Now first calculate cross product of these vectors we have
$\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right) = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\vec j}&{\vec k} \\
2&0&0 \\
0&{ - 1}&0
\end{array}} \right| = \left( {0 - 0} \right)\hat i - \left( {0 - 0} \right)\vec j + \left( { - 2 - 0} \right)\vec k = - 2\vec k$
Now the modulus of above cross product is
$\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right| = \left| { - 2\hat k} \right| = \sqrt {{{\left( { - 2} \right)}^2}} = 2$
So, the area of the rectangle is 2 sq. units.
Hence, option (c) is correct.
Note: In such types of questions the key concept we have to remember is that always recall that the area of rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is$\left| {\left( {\vec a \times \vec b} \right)} \right|$, so first calculate the adjacent sides of the rectangle as above then apply this concept, we will get the required area of the rectangle.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
