# Area of a rectangle having vertices A, B, C, D with position vectors $ - \hat i + \dfrac{1}{2}\hat j + 4\hat k,{\text{ }}\hat i + \dfrac{1}{2}\hat j + 4\hat k,{\text{ }}\hat i - \dfrac{1}{2}\hat j + 4\hat k,{\text{ }} - \hat i - \dfrac{1}{2}\hat j + 4\hat k$ respectively is,

$

a.{\text{ }}\dfrac{1}{2} \\

b.{\text{ }}1 \\

c.{\text{ }}2 \\

d.{\text{ }}4 \\

$

Last updated date: 27th Mar 2023

•

Total views: 309k

•

Views today: 2.85k

Answer

Verified

309k+ views

Hint: In this question first find out the position vectors of the adjacent sides, later on apply the property of cross product, so, using these concepts we can reach the solution of the question.

Position vectors of the rectangle having vertices A, B, C, D are given as

$

\vec O\vec A = - \hat i + \dfrac{1}{2}\hat j + 4\hat k \\

\vec O\vec B = \hat i + \dfrac{1}{2}\hat j + 4\hat k \\

\vec O\vec C = \hat i - \dfrac{1}{2}\hat j + 4\hat k \\

\vec O\vec D = - \hat i - \dfrac{1}{2}\hat j + 4\hat k \\

$

The adjacent sides of rectangle ABCD is given as (AB, BC)

So, the position vectors of these sides is given as

$\left( {\vec A\vec B} \right) = \left( {\vec O\vec B} \right) - \left( {\vec O\vec A} \right)$

Now substitute the above values in above equation we have,

$

\Rightarrow \left( {\vec A\vec B} \right) = \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( { - \hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\

\Rightarrow \left( {\vec A\vec B} \right) = \left( {1 + 1} \right)\hat i + \left( {\dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = 2\hat i \\

$

And, $\left( {\vec B\vec C} \right) = \left( {\vec O\vec C} \right) - \left( {\vec O\vec B} \right)$

Now substitute the above values in above equation we have,

$

\Rightarrow \left( {\vec B\vec C} \right) = \left( {\hat i - \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\

\Rightarrow \left( {\vec B\vec C} \right) = \left( {1 - 1} \right)\hat i + \left( { - \dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = - \hat j \\

$

Now we all know that the area of the rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is $\left| {\left( {\vec a \times \vec b} \right)} \right|$.

So the area of the rectangle having adjacent sides $\left( {\vec A\vec B} \right)$ and $\left( {\vec B\vec C} \right)$ is $\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right|$

Now first calculate cross product of these vectors we have

$\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right) = \left| {\begin{array}{*{20}{c}}

{\hat i}&{\vec j}&{\vec k} \\

2&0&0 \\

0&{ - 1}&0

\end{array}} \right| = \left( {0 - 0} \right)\hat i - \left( {0 - 0} \right)\vec j + \left( { - 2 - 0} \right)\vec k = - 2\vec k$

Now the modulus of above cross product is

$\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right| = \left| { - 2\hat k} \right| = \sqrt {{{\left( { - 2} \right)}^2}} = 2$

So, the area of the rectangle is 2 sq. units.

Hence, option (c) is correct.

Note: In such types of questions the key concept we have to remember is that always recall that the area of rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is$\left| {\left( {\vec a \times \vec b} \right)} \right|$, so first calculate the adjacent sides of the rectangle as above then apply this concept, we will get the required area of the rectangle.

Position vectors of the rectangle having vertices A, B, C, D are given as

$

\vec O\vec A = - \hat i + \dfrac{1}{2}\hat j + 4\hat k \\

\vec O\vec B = \hat i + \dfrac{1}{2}\hat j + 4\hat k \\

\vec O\vec C = \hat i - \dfrac{1}{2}\hat j + 4\hat k \\

\vec O\vec D = - \hat i - \dfrac{1}{2}\hat j + 4\hat k \\

$

The adjacent sides of rectangle ABCD is given as (AB, BC)

So, the position vectors of these sides is given as

$\left( {\vec A\vec B} \right) = \left( {\vec O\vec B} \right) - \left( {\vec O\vec A} \right)$

Now substitute the above values in above equation we have,

$

\Rightarrow \left( {\vec A\vec B} \right) = \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( { - \hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\

\Rightarrow \left( {\vec A\vec B} \right) = \left( {1 + 1} \right)\hat i + \left( {\dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = 2\hat i \\

$

And, $\left( {\vec B\vec C} \right) = \left( {\vec O\vec C} \right) - \left( {\vec O\vec B} \right)$

Now substitute the above values in above equation we have,

$

\Rightarrow \left( {\vec B\vec C} \right) = \left( {\hat i - \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\

\Rightarrow \left( {\vec B\vec C} \right) = \left( {1 - 1} \right)\hat i + \left( { - \dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = - \hat j \\

$

Now we all know that the area of the rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is $\left| {\left( {\vec a \times \vec b} \right)} \right|$.

So the area of the rectangle having adjacent sides $\left( {\vec A\vec B} \right)$ and $\left( {\vec B\vec C} \right)$ is $\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right|$

Now first calculate cross product of these vectors we have

$\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right) = \left| {\begin{array}{*{20}{c}}

{\hat i}&{\vec j}&{\vec k} \\

2&0&0 \\

0&{ - 1}&0

\end{array}} \right| = \left( {0 - 0} \right)\hat i - \left( {0 - 0} \right)\vec j + \left( { - 2 - 0} \right)\vec k = - 2\vec k$

Now the modulus of above cross product is

$\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right| = \left| { - 2\hat k} \right| = \sqrt {{{\left( { - 2} \right)}^2}} = 2$

So, the area of the rectangle is 2 sq. units.

Hence, option (c) is correct.

Note: In such types of questions the key concept we have to remember is that always recall that the area of rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is$\left| {\left( {\vec a \times \vec b} \right)} \right|$, so first calculate the adjacent sides of the rectangle as above then apply this concept, we will get the required area of the rectangle.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?