
Area enclosed by the curve \[\pi \left[ 4{{\left( x-\sqrt{2} \right)}^{2}}+{{y}^{2}} \right]=8\] is
(A) \[\pi \]sq units
(B) \[2\]sq units
(C) \[3\pi \]sq units
(D) \[4\]sq units
Answer
621.9k+ views
Hint: First try to make a rough sketch. Now, break the entire area into parts as per the line of symmetry. Then find the area under one curve and multiply by four to get the total area. Thus, break the integral up into two smaller intervals by looking at the diagram and proceed. Consider the given equation of the curve.
\[\pi \left[ 4{{\left( x-\sqrt{2} \right)}^{2}}+{{y}^{2}} \right]=8\]
Dividing both sides by 8, we get
\[\dfrac{4\pi {{\left( x-\sqrt{2} \right)}^{2}}}{8}+\dfrac{\pi {{y}^{2}}}{8}=1\]
The above equation can also be written as
\[\dfrac{{{\left( x-\sqrt{2} \right)}^{2}}}{\dfrac{8}{4\pi }}+\dfrac{{{y}^{2}}}{\dfrac{8}{\pi }}=1\]
\[\dfrac{{{\left( x-\sqrt{2} \right)}^{2}}}{\dfrac{2}{\pi }}+\dfrac{{{y}^{2}}}{\dfrac{8}{\pi }}=1..........(i)\]
The above equation resembles an ellipse.
The general equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ . Comparing the equation (i) with the general equation of ellipse, we get
\[a=\sqrt{\dfrac{2}{\pi }}\]and \[b=\sqrt{\dfrac{8}{\pi }}\]
And the centre of the ellipse is $\left( \sqrt{2},0 \right)$ .
We know the area of the ellipse is given by the formula,
\[\text{Area=}\pi ab\]
Substituting the value of $a,b$, we get
\[\begin{align}
& \Rightarrow \text{Area =}\pi \times \sqrt{\dfrac{2}{\pi }}\times \sqrt{\dfrac{8}{\pi }} \\
& \Rightarrow \text{Area =}\dfrac{\pi }{\pi }\times \sqrt{2\times 8} \\
& \Rightarrow \text{Area =}\sqrt{16}=4 \\
\end{align}\]
So the area enclosed by the curve \[\pi \left[ 4{{\left( x-\sqrt{2} \right)}^{2}}+{{y}^{2}} \right]=8\] is $4$ units.
Hence the option (D) is the correct answer.
Note: The probability of mistake is that student might take \[a=\dfrac{8}{4\pi }\] and \[b=\dfrac{8}{\pi }\]instead of \[a=\sqrt{\dfrac{8}{4\pi }}\] and \[b=\sqrt{\dfrac{8}{\pi }}\] as the general equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
And using integration to find the area of the ellipse will result in a complex number.
\[\pi \left[ 4{{\left( x-\sqrt{2} \right)}^{2}}+{{y}^{2}} \right]=8\]
Dividing both sides by 8, we get
\[\dfrac{4\pi {{\left( x-\sqrt{2} \right)}^{2}}}{8}+\dfrac{\pi {{y}^{2}}}{8}=1\]
The above equation can also be written as
\[\dfrac{{{\left( x-\sqrt{2} \right)}^{2}}}{\dfrac{8}{4\pi }}+\dfrac{{{y}^{2}}}{\dfrac{8}{\pi }}=1\]
\[\dfrac{{{\left( x-\sqrt{2} \right)}^{2}}}{\dfrac{2}{\pi }}+\dfrac{{{y}^{2}}}{\dfrac{8}{\pi }}=1..........(i)\]
The above equation resembles an ellipse.
The general equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ . Comparing the equation (i) with the general equation of ellipse, we get
\[a=\sqrt{\dfrac{2}{\pi }}\]and \[b=\sqrt{\dfrac{8}{\pi }}\]
And the centre of the ellipse is $\left( \sqrt{2},0 \right)$ .
We know the area of the ellipse is given by the formula,
\[\text{Area=}\pi ab\]
Substituting the value of $a,b$, we get
\[\begin{align}
& \Rightarrow \text{Area =}\pi \times \sqrt{\dfrac{2}{\pi }}\times \sqrt{\dfrac{8}{\pi }} \\
& \Rightarrow \text{Area =}\dfrac{\pi }{\pi }\times \sqrt{2\times 8} \\
& \Rightarrow \text{Area =}\sqrt{16}=4 \\
\end{align}\]
So the area enclosed by the curve \[\pi \left[ 4{{\left( x-\sqrt{2} \right)}^{2}}+{{y}^{2}} \right]=8\] is $4$ units.
Hence the option (D) is the correct answer.
Note: The probability of mistake is that student might take \[a=\dfrac{8}{4\pi }\] and \[b=\dfrac{8}{\pi }\]instead of \[a=\sqrt{\dfrac{8}{4\pi }}\] and \[b=\sqrt{\dfrac{8}{\pi }}\] as the general equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
And using integration to find the area of the ellipse will result in a complex number.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

