Answer
Verified
493.2k+ views
Hint: Rolle`s Theorem must satisfy all the three conditions and if $f\left( x \right)$ is a polynomial function then the function is continuous in the interval.
First of all, we should know the conditions of Rolle`s theorem
Conditions for Rolle`s theorem is
(1) $f\left( x \right)$ is a continuous at $\left[ {a,b} \right]$
(2) $f\left( x \right)$is derivable at $\left( {a,b} \right)$
(3) $f\left( a \right) = f\left( b \right)$
If all the three conditions satisfied then there exist some \[c\] in $f\left( a \right) = f\left( b \right)$ such that $f'\left( c \right) = 0$
Here we can clearly observe that
(a) $f\left( x \right)$ is a polynomial, so it is continuous in the interval $\left[ {0,2} \right]$
(b) $f'\left( x \right) = 3{x^2} - 6x + 2$ exists for all $x \in \left( {0,2} \right)$
So, $f\left( x \right)$ is differentiable for all $x \in \left( {0,2} \right)$ and
(c) $f\left( 0 \right) = f\left( 2 \right)$ since,
$
f\left( 0 \right) = {\left( 0 \right)^3} - 3{\left( 0 \right)^2} + 2\left( 0 \right) = 0 \\
f\left( 2 \right) = {\left( 2 \right)^3} - 3{\left( 2 \right)^2} + 2\left( 2 \right) \\
{\text{ = }}8 - 3 \times 4 + 4 = 0 \\
$
Thus, all the three conditions of Rolle`s theorem are satisfied.
So, there must be exist $c \in \left[ {0,2} \right]$ such that $f'\left( c \right) = 0$
$f'\left( c \right) = 3{\left( c \right)^2} - 6c + 2 = 0$
solving the equation $3{\left( c \right)^2} - 6c + 2 = 0$ we get
$
\Rightarrow 3{c^2} - 6c + 2 = 0 \\
c = \dfrac{{6 \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( {3 \times 2} \right)} }}{{2\left( 3 \right)}} \\
c = \dfrac{{6 \pm \sqrt {36 - 24} }}{6} \\
c = \dfrac{{6 \pm \sqrt {12} }}{6} \\
c = \dfrac{{6 \pm 2\sqrt 3 }}{6} \\
$
Separating the positive terms, we get
$
c = \dfrac{{6 + 2\sqrt 3 }}{6} \\
c = 1 + \dfrac{{\sqrt 3 }}{3} \\
c = 1 + \dfrac{1}{{\sqrt 3 }} \\
$
Separating the negative terms, we get
$
c = \dfrac{{6 - 2\sqrt 3 }}{6} \\
c = 1 - \dfrac{{\sqrt 3 }}{3} \\
c = 1 - \dfrac{1}{{\sqrt 3 }} \\
$
Thus, $c = 1 \pm \dfrac{1}{{\sqrt 3 }} \in \left[ {0,2} \right]$ and Rolle`s theorem is verified.
Therefore, the value of $c$ is $1 \pm \dfrac{1}{{\sqrt 3 }}$.
So, option B. $1 \pm \dfrac{1}{{\sqrt 3 }}$
Note: All the three conditions must be satisfied to obtain the value of $c$ in Rolle`s theorem. Otherwise the Rolle`s theorem cannot be verified.
First of all, we should know the conditions of Rolle`s theorem
Conditions for Rolle`s theorem is
(1) $f\left( x \right)$ is a continuous at $\left[ {a,b} \right]$
(2) $f\left( x \right)$is derivable at $\left( {a,b} \right)$
(3) $f\left( a \right) = f\left( b \right)$
If all the three conditions satisfied then there exist some \[c\] in $f\left( a \right) = f\left( b \right)$ such that $f'\left( c \right) = 0$
Here we can clearly observe that
(a) $f\left( x \right)$ is a polynomial, so it is continuous in the interval $\left[ {0,2} \right]$
(b) $f'\left( x \right) = 3{x^2} - 6x + 2$ exists for all $x \in \left( {0,2} \right)$
So, $f\left( x \right)$ is differentiable for all $x \in \left( {0,2} \right)$ and
(c) $f\left( 0 \right) = f\left( 2 \right)$ since,
$
f\left( 0 \right) = {\left( 0 \right)^3} - 3{\left( 0 \right)^2} + 2\left( 0 \right) = 0 \\
f\left( 2 \right) = {\left( 2 \right)^3} - 3{\left( 2 \right)^2} + 2\left( 2 \right) \\
{\text{ = }}8 - 3 \times 4 + 4 = 0 \\
$
Thus, all the three conditions of Rolle`s theorem are satisfied.
So, there must be exist $c \in \left[ {0,2} \right]$ such that $f'\left( c \right) = 0$
$f'\left( c \right) = 3{\left( c \right)^2} - 6c + 2 = 0$
solving the equation $3{\left( c \right)^2} - 6c + 2 = 0$ we get
$
\Rightarrow 3{c^2} - 6c + 2 = 0 \\
c = \dfrac{{6 \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( {3 \times 2} \right)} }}{{2\left( 3 \right)}} \\
c = \dfrac{{6 \pm \sqrt {36 - 24} }}{6} \\
c = \dfrac{{6 \pm \sqrt {12} }}{6} \\
c = \dfrac{{6 \pm 2\sqrt 3 }}{6} \\
$
Separating the positive terms, we get
$
c = \dfrac{{6 + 2\sqrt 3 }}{6} \\
c = 1 + \dfrac{{\sqrt 3 }}{3} \\
c = 1 + \dfrac{1}{{\sqrt 3 }} \\
$
Separating the negative terms, we get
$
c = \dfrac{{6 - 2\sqrt 3 }}{6} \\
c = 1 - \dfrac{{\sqrt 3 }}{3} \\
c = 1 - \dfrac{1}{{\sqrt 3 }} \\
$
Thus, $c = 1 \pm \dfrac{1}{{\sqrt 3 }} \in \left[ {0,2} \right]$ and Rolle`s theorem is verified.
Therefore, the value of $c$ is $1 \pm \dfrac{1}{{\sqrt 3 }}$.
So, option B. $1 \pm \dfrac{1}{{\sqrt 3 }}$
Note: All the three conditions must be satisfied to obtain the value of $c$ in Rolle`s theorem. Otherwise the Rolle`s theorem cannot be verified.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE