An engine operating between \[{\rm{15}}{{\rm{0}}^{\rm{0}}}{\rm{C}}\]and \[{\rm{2}}{{\rm{5}}^{\rm{0}}}{\rm{C}}\] takes \[{\rm{500}}\,{\rm{J}}\] heat from a higher temperature reservoir. If there are no frictional losses, then work done by the engine is:
A. \[147.7\,{\rm{J}}\]
B. \[157.75\,{\rm{J}}\]
C. \[165.85\,{\rm{J}}\]
D. \[169.95\,{\rm{J}}\]
Last updated date: 26th Mar 2023
•
Total views: 70.2k
•
Views today: 0.47k
Answer
70.2k+ views
Hint: The fraction of the heat absorbed by a machine that it can transform into work is known as the efficiency of the machine. The machine used for the conversion of heat into work is called the heat engine.
Formula used
Work done can be calculated by using the relationship as shown below.
\[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]
where, \[{\rm{W}}\]= work done
\[{\rm{q}}\]= heat
\[{{\rm{T}}_1}\]= temperature of the sink
\[{{\rm{T}}_{\rm{2}}}\]= temperature of the source
Complete Step by Step Solution:
In order to convert the heat into work, the heat engine absorbs heat from a heat reservoir at a higher temperature known as the source, where it converts a part of heat into work and returns the remainder to the heat reservoir at a lower temperature known as the sink.
As per the given data,
Initial temperature, \[{{\rm{T}}_1}{\rm{ = 2}}{{\rm{5}}^{\rm{0}}}{\rm{C}}\]
Final temperature, \[{{\rm{T}}_2}{\rm{ = 15}}{{\rm{0}}^{\rm{0}}}{\rm{C}}\]
Heat, \[{\rm{q = 500}}\,{\rm{J}}\]
Convert the given temperatures from degree Celsius to Kelvin by using the relationship, \[{\rm{K}}{{\rm{ = }}^{\rm{0}}}{\rm{C}} + 273\]as shown below.
So, the sink temperature and source temperature will become as:
\[{{\rm{T}}_1}{\rm{ = 2}}{{\rm{5}}^{\rm{0}}}{\rm{C = (25 + 273)K = 298K}}\]
\[{{\rm{T}}_2}{\rm{ = 15}}{{\rm{0}}^{\rm{0}}}{\rm{C = (150 + 273)K = 423K}}\]
Find the work done by the heat engine by using the relationship as given below.
\[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]
Rearrange the above formula and solve for \[{\rm{W}}\].
\[{\rm{W}} = {\rm{q}}(\dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}})\]
Substituting the values given, we get as:
\[\begin{array}{c}{\rm{W}} = {\rm{q}}(\dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}})\\ = 500\,{\rm{J}}(\dfrac{{423{\rm{K}} - 298{\rm{K}}}}{{423{\rm{K}}}})\\ = 500\,{\rm{J}} \times (\dfrac{{125{\rm{K}}}}{{423{\rm{K}}}})\\ = 147.7\,{\rm{J}}\end{array}\]
Hence, the work done by the heat engine is calculated to be as \[147.7\,{\rm{J}}\]
Therefore, option A is correct.
Note: The relation \[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]gives the efficiency of the Carnot cycle or engine. It is clear that the efficiency of the reversible heat engine depends only upon the temperatures of the source and sink and is independent of the nature of the working substance.
Formula used
Work done can be calculated by using the relationship as shown below.
\[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]
where, \[{\rm{W}}\]= work done
\[{\rm{q}}\]= heat
\[{{\rm{T}}_1}\]= temperature of the sink
\[{{\rm{T}}_{\rm{2}}}\]= temperature of the source
Complete Step by Step Solution:
In order to convert the heat into work, the heat engine absorbs heat from a heat reservoir at a higher temperature known as the source, where it converts a part of heat into work and returns the remainder to the heat reservoir at a lower temperature known as the sink.
As per the given data,
Initial temperature, \[{{\rm{T}}_1}{\rm{ = 2}}{{\rm{5}}^{\rm{0}}}{\rm{C}}\]
Final temperature, \[{{\rm{T}}_2}{\rm{ = 15}}{{\rm{0}}^{\rm{0}}}{\rm{C}}\]
Heat, \[{\rm{q = 500}}\,{\rm{J}}\]
Convert the given temperatures from degree Celsius to Kelvin by using the relationship, \[{\rm{K}}{{\rm{ = }}^{\rm{0}}}{\rm{C}} + 273\]as shown below.
So, the sink temperature and source temperature will become as:
\[{{\rm{T}}_1}{\rm{ = 2}}{{\rm{5}}^{\rm{0}}}{\rm{C = (25 + 273)K = 298K}}\]
\[{{\rm{T}}_2}{\rm{ = 15}}{{\rm{0}}^{\rm{0}}}{\rm{C = (150 + 273)K = 423K}}\]
Find the work done by the heat engine by using the relationship as given below.
\[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]
Rearrange the above formula and solve for \[{\rm{W}}\].
\[{\rm{W}} = {\rm{q}}(\dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}})\]
Substituting the values given, we get as:
\[\begin{array}{c}{\rm{W}} = {\rm{q}}(\dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}})\\ = 500\,{\rm{J}}(\dfrac{{423{\rm{K}} - 298{\rm{K}}}}{{423{\rm{K}}}})\\ = 500\,{\rm{J}} \times (\dfrac{{125{\rm{K}}}}{{423{\rm{K}}}})\\ = 147.7\,{\rm{J}}\end{array}\]
Hence, the work done by the heat engine is calculated to be as \[147.7\,{\rm{J}}\]
Therefore, option A is correct.
Note: The relation \[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]gives the efficiency of the Carnot cycle or engine. It is clear that the efficiency of the reversible heat engine depends only upon the temperatures of the source and sink and is independent of the nature of the working substance.
Recently Updated Pages
In India on the occasion of marriages the fireworks class 12 chemistry JEE_Main

The alkaline earth metals Ba Sr Ca and Mg may be arranged class 12 chemistry JEE_Main

Which of the following has the highest electrode potential class 12 chemistry JEE_Main

Which of the following is a true peroxide A rmSrmOrm2 class 12 chemistry JEE_Main

Which element possesses the biggest atomic radii A class 11 chemistry JEE_Main

Phosphine is obtained from the following ore A Calcium class 12 chemistry JEE_Main

Trending doubts
Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Cl P Cl bond angles in PCl5 molecule is A 120 circ class 11 chemistry CBSE

Two vectors of equal magnitude have a resultant equal class 11 physics CBSE

A magnetic moment of 173BM will be shown by which one class 11 chemistry CBSE

Which of the following cannot be prepared by Sandmeyers class 11 chemistry CBSE

The maximum number of possible oxidation states of class 12 chemistry CBSE

What would happen to the life of a cell if there was class 11 biology CBSE

Name the members of the lanthanoid series which exhibit class 12 chemistry CBSE
