
An engine operating between \[{\rm{15}}{{\rm{0}}^{\rm{0}}}{\rm{C}}\]and \[{\rm{2}}{{\rm{5}}^{\rm{0}}}{\rm{C}}\] takes \[{\rm{500}}\,{\rm{J}}\] heat from a higher temperature reservoir. If there are no frictional losses, then work done by the engine is:
A. \[147.7\,{\rm{J}}\]
B. \[157.75\,{\rm{J}}\]
C. \[165.85\,{\rm{J}}\]
D. \[169.95\,{\rm{J}}\]
Answer
232.8k+ views
Hint: The fraction of the heat absorbed by a machine that it can transform into work is known as the efficiency of the machine. The machine used for the conversion of heat into work is called the heat engine.
Formula used
Work done can be calculated by using the relationship as shown below.
\[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]
where, \[{\rm{W}}\]= work done
\[{\rm{q}}\]= heat
\[{{\rm{T}}_1}\]= temperature of the sink
\[{{\rm{T}}_{\rm{2}}}\]= temperature of the source
Complete Step by Step Solution:
In order to convert the heat into work, the heat engine absorbs heat from a heat reservoir at a higher temperature known as the source, where it converts a part of heat into work and returns the remainder to the heat reservoir at a lower temperature known as the sink.
As per the given data,
Initial temperature, \[{{\rm{T}}_1}{\rm{ = 2}}{{\rm{5}}^{\rm{0}}}{\rm{C}}\]
Final temperature, \[{{\rm{T}}_2}{\rm{ = 15}}{{\rm{0}}^{\rm{0}}}{\rm{C}}\]
Heat, \[{\rm{q = 500}}\,{\rm{J}}\]
Convert the given temperatures from degree Celsius to Kelvin by using the relationship, \[{\rm{K}}{{\rm{ = }}^{\rm{0}}}{\rm{C}} + 273\]as shown below.
So, the sink temperature and source temperature will become as:
\[{{\rm{T}}_1}{\rm{ = 2}}{{\rm{5}}^{\rm{0}}}{\rm{C = (25 + 273)K = 298K}}\]
\[{{\rm{T}}_2}{\rm{ = 15}}{{\rm{0}}^{\rm{0}}}{\rm{C = (150 + 273)K = 423K}}\]
Find the work done by the heat engine by using the relationship as given below.
\[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]
Rearrange the above formula and solve for \[{\rm{W}}\].
\[{\rm{W}} = {\rm{q}}(\dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}})\]
Substituting the values given, we get as:
\[\begin{array}{c}{\rm{W}} = {\rm{q}}(\dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}})\\ = 500\,{\rm{J}}(\dfrac{{423{\rm{K}} - 298{\rm{K}}}}{{423{\rm{K}}}})\\ = 500\,{\rm{J}} \times (\dfrac{{125{\rm{K}}}}{{423{\rm{K}}}})\\ = 147.7\,{\rm{J}}\end{array}\]
Hence, the work done by the heat engine is calculated to be as \[147.7\,{\rm{J}}\]
Therefore, option A is correct.
Note: The relation \[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]gives the efficiency of the Carnot cycle or engine. It is clear that the efficiency of the reversible heat engine depends only upon the temperatures of the source and sink and is independent of the nature of the working substance.
Formula used
Work done can be calculated by using the relationship as shown below.
\[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]
where, \[{\rm{W}}\]= work done
\[{\rm{q}}\]= heat
\[{{\rm{T}}_1}\]= temperature of the sink
\[{{\rm{T}}_{\rm{2}}}\]= temperature of the source
Complete Step by Step Solution:
In order to convert the heat into work, the heat engine absorbs heat from a heat reservoir at a higher temperature known as the source, where it converts a part of heat into work and returns the remainder to the heat reservoir at a lower temperature known as the sink.
As per the given data,
Initial temperature, \[{{\rm{T}}_1}{\rm{ = 2}}{{\rm{5}}^{\rm{0}}}{\rm{C}}\]
Final temperature, \[{{\rm{T}}_2}{\rm{ = 15}}{{\rm{0}}^{\rm{0}}}{\rm{C}}\]
Heat, \[{\rm{q = 500}}\,{\rm{J}}\]
Convert the given temperatures from degree Celsius to Kelvin by using the relationship, \[{\rm{K}}{{\rm{ = }}^{\rm{0}}}{\rm{C}} + 273\]as shown below.
So, the sink temperature and source temperature will become as:
\[{{\rm{T}}_1}{\rm{ = 2}}{{\rm{5}}^{\rm{0}}}{\rm{C = (25 + 273)K = 298K}}\]
\[{{\rm{T}}_2}{\rm{ = 15}}{{\rm{0}}^{\rm{0}}}{\rm{C = (150 + 273)K = 423K}}\]
Find the work done by the heat engine by using the relationship as given below.
\[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]
Rearrange the above formula and solve for \[{\rm{W}}\].
\[{\rm{W}} = {\rm{q}}(\dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}})\]
Substituting the values given, we get as:
\[\begin{array}{c}{\rm{W}} = {\rm{q}}(\dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}})\\ = 500\,{\rm{J}}(\dfrac{{423{\rm{K}} - 298{\rm{K}}}}{{423{\rm{K}}}})\\ = 500\,{\rm{J}} \times (\dfrac{{125{\rm{K}}}}{{423{\rm{K}}}})\\ = 147.7\,{\rm{J}}\end{array}\]
Hence, the work done by the heat engine is calculated to be as \[147.7\,{\rm{J}}\]
Therefore, option A is correct.
Note: The relation \[\dfrac{{\rm{W}}}{{\rm{q}}} = \dfrac{{{{\rm{T}}_{\rm{2}}} - {{\rm{T}}_1}}}{{{{\rm{T}}_{\rm{2}}}}}\]gives the efficiency of the Carnot cycle or engine. It is clear that the efficiency of the reversible heat engine depends only upon the temperatures of the source and sink and is independent of the nature of the working substance.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

