
The ratio of speed of sound in Hydrogen to that in oxygen at the same temperature is:
A. \[1:4\]
B. \[4:1\]
C. \[1:1\]
D. \[16:1\]
Answer
146.1k+ views
Hint: The given question is from kinetic theory of gases and speed of sound in gaseous medium. As we know that velocity of sound depends on adiabatic constant, pressure of gas and molecular mass of gas in a specific relation. So we use this relation to solve this problem.
Complete step by step answer:
According to kinetic theory of gases the speed of sound in a gas medium depends on many factors like atomicity of gas, pressure of gas and molecular weight of gas molecules. This relation of speed of sound is given by
$v = \sqrt {\dfrac{{\gamma P}}{\rho }} $$ = \sqrt {\dfrac{{\gamma RT}}{M}} $
Where $v$= speed of sound
$\gamma $= Adiabatic constant for gas
$P$= Pressure of gas
$\rho $= density of gas
R= Universal gas constant
T= Temperature of gas
M= Molecular weight of gas
The given parameters in above question are
Hydrogen$ \Rightarrow {M_{{H_2}}} = 2$
Oxygen$ \Rightarrow {M_{{O_2}}} = 32$
Temperature is the same for both gases as per given condition. And both gases have the same atomicity so the value of adiabatic constant will also be the same.
So from the above mentioned formula we can say that $\gamma RT$ will have constant value for both gases and the value of speed of sound will depend only on the molecular mass of gas.
$v \propto \sqrt {\dfrac{1}{M}} $
After comparing both gases, we get
$\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \sqrt {\dfrac{{{M_{{O_2}}}}}{{{M_{{H_2}}}}}} $
$\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \sqrt {\dfrac{{32}}{2}} = \dfrac{4}{1}$
So the ratio of speed of sound in hydrogen and oxygen gas will be 4 : 1.
The correct answer is option (B).
Note: Here it is important to note that we have taken the same value of $\gamma$ for both the gases as hydrogen and oxygen exist as diatomic molecules and hence they will have the same degrees of freedom and hence the same $\gamma$.
Complete step by step answer:
According to kinetic theory of gases the speed of sound in a gas medium depends on many factors like atomicity of gas, pressure of gas and molecular weight of gas molecules. This relation of speed of sound is given by
$v = \sqrt {\dfrac{{\gamma P}}{\rho }} $$ = \sqrt {\dfrac{{\gamma RT}}{M}} $
Where $v$= speed of sound
$\gamma $= Adiabatic constant for gas
$P$= Pressure of gas
$\rho $= density of gas
R= Universal gas constant
T= Temperature of gas
M= Molecular weight of gas
The given parameters in above question are
Hydrogen$ \Rightarrow {M_{{H_2}}} = 2$
Oxygen$ \Rightarrow {M_{{O_2}}} = 32$
Temperature is the same for both gases as per given condition. And both gases have the same atomicity so the value of adiabatic constant will also be the same.
So from the above mentioned formula we can say that $\gamma RT$ will have constant value for both gases and the value of speed of sound will depend only on the molecular mass of gas.
$v \propto \sqrt {\dfrac{1}{M}} $
After comparing both gases, we get
$\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \sqrt {\dfrac{{{M_{{O_2}}}}}{{{M_{{H_2}}}}}} $
$\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \sqrt {\dfrac{{32}}{2}} = \dfrac{4}{1}$
So the ratio of speed of sound in hydrogen and oxygen gas will be 4 : 1.
The correct answer is option (B).
Note: Here it is important to note that we have taken the same value of $\gamma$ for both the gases as hydrogen and oxygen exist as diatomic molecules and hence they will have the same degrees of freedom and hence the same $\gamma$.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
