
The ratio of speed of sound in Hydrogen to that in oxygen at the same temperature is:
A. \[1:4\]
B. \[4:1\]
C. \[1:1\]
D. \[16:1\]
Answer
233.1k+ views
Hint: The given question is from kinetic theory of gases and speed of sound in gaseous medium. As we know that velocity of sound depends on adiabatic constant, pressure of gas and molecular mass of gas in a specific relation. So we use this relation to solve this problem.
Complete step by step answer:
According to kinetic theory of gases the speed of sound in a gas medium depends on many factors like atomicity of gas, pressure of gas and molecular weight of gas molecules. This relation of speed of sound is given by
$v = \sqrt {\dfrac{{\gamma P}}{\rho }} $$ = \sqrt {\dfrac{{\gamma RT}}{M}} $
Where $v$= speed of sound
$\gamma $= Adiabatic constant for gas
$P$= Pressure of gas
$\rho $= density of gas
R= Universal gas constant
T= Temperature of gas
M= Molecular weight of gas
The given parameters in above question are
Hydrogen$ \Rightarrow {M_{{H_2}}} = 2$
Oxygen$ \Rightarrow {M_{{O_2}}} = 32$
Temperature is the same for both gases as per given condition. And both gases have the same atomicity so the value of adiabatic constant will also be the same.
So from the above mentioned formula we can say that $\gamma RT$ will have constant value for both gases and the value of speed of sound will depend only on the molecular mass of gas.
$v \propto \sqrt {\dfrac{1}{M}} $
After comparing both gases, we get
$\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \sqrt {\dfrac{{{M_{{O_2}}}}}{{{M_{{H_2}}}}}} $
$\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \sqrt {\dfrac{{32}}{2}} = \dfrac{4}{1}$
So the ratio of speed of sound in hydrogen and oxygen gas will be 4 : 1.
The correct answer is option (B).
Note: Here it is important to note that we have taken the same value of $\gamma$ for both the gases as hydrogen and oxygen exist as diatomic molecules and hence they will have the same degrees of freedom and hence the same $\gamma$.
Complete step by step answer:
According to kinetic theory of gases the speed of sound in a gas medium depends on many factors like atomicity of gas, pressure of gas and molecular weight of gas molecules. This relation of speed of sound is given by
$v = \sqrt {\dfrac{{\gamma P}}{\rho }} $$ = \sqrt {\dfrac{{\gamma RT}}{M}} $
Where $v$= speed of sound
$\gamma $= Adiabatic constant for gas
$P$= Pressure of gas
$\rho $= density of gas
R= Universal gas constant
T= Temperature of gas
M= Molecular weight of gas
The given parameters in above question are
Hydrogen$ \Rightarrow {M_{{H_2}}} = 2$
Oxygen$ \Rightarrow {M_{{O_2}}} = 32$
Temperature is the same for both gases as per given condition. And both gases have the same atomicity so the value of adiabatic constant will also be the same.
So from the above mentioned formula we can say that $\gamma RT$ will have constant value for both gases and the value of speed of sound will depend only on the molecular mass of gas.
$v \propto \sqrt {\dfrac{1}{M}} $
After comparing both gases, we get
$\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \sqrt {\dfrac{{{M_{{O_2}}}}}{{{M_{{H_2}}}}}} $
$\dfrac{{{v_{{H_2}}}}}{{{v_{{O_2}}}}} = \sqrt {\dfrac{{32}}{2}} = \dfrac{4}{1}$
So the ratio of speed of sound in hydrogen and oxygen gas will be 4 : 1.
The correct answer is option (B).
Note: Here it is important to note that we have taken the same value of $\gamma$ for both the gases as hydrogen and oxygen exist as diatomic molecules and hence they will have the same degrees of freedom and hence the same $\gamma$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

