Answer
Verified
470.1k+ views
Hint: Use the given Electric field vectors and resultant Torque to find the components of dipole moment. This can then be used to find the angle it makes with x-axis.
Formula used:
Torque:
$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)
where,
$\overrightarrow p $ is the dipole moment.
$\overrightarrow E $ is the Electric field.
Angle made by vector with x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)
where,
${p_y}$ is the y component of the vector $\overrightarrow p $
${p_x}$ is the x component of the vector $\overrightarrow p $
Step-by-step answer:
Given:
1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$
2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$
3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $
To find: The angle $\overrightarrow p $makes with x-axis.
Step 1 of 5:
Let $\overrightarrow p $ be the following:
\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]
Step 2 of 5:
Use eq (1) to find Torque (1):
$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$
$
\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\
\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\
\tau \widehat k = - {p_y}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - {p_y}E$
Rearrange to find ${p_y}$:
${p_y} = - \dfrac{\tau }{E}$ ……(3)
Step 3 of 5:
Find Electric field (2):
$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$
Find Torque (2):
$
\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\
\overrightarrow {{T_2}} = - \tau \widehat k \\
$
Step 4 of 5:
Use eq (1) to find Torque (2):
$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$
$
- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\
- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\
\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - \sqrt 3 {p_x}E$
Rearrange to find ${p_x}$:
${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)
Step 5 of 5:
Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$
${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:
\[
\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\
\theta = {\tan ^{ - 1}}\sqrt 3 \\
\theta = 60^\circ \\
\]
Correct Answer:
The angle $\theta $ is: (d) 60$^\circ $
Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.
Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.
Formula used:
Torque:
$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)
where,
$\overrightarrow p $ is the dipole moment.
$\overrightarrow E $ is the Electric field.
Angle made by vector with x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)
where,
${p_y}$ is the y component of the vector $\overrightarrow p $
${p_x}$ is the x component of the vector $\overrightarrow p $
Step-by-step answer:
Given:
1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$
2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$
3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $
To find: The angle $\overrightarrow p $makes with x-axis.
Step 1 of 5:
Let $\overrightarrow p $ be the following:
\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]
Step 2 of 5:
Use eq (1) to find Torque (1):
$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$
$
\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\
\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\
\tau \widehat k = - {p_y}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - {p_y}E$
Rearrange to find ${p_y}$:
${p_y} = - \dfrac{\tau }{E}$ ……(3)
Step 3 of 5:
Find Electric field (2):
$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$
Find Torque (2):
$
\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\
\overrightarrow {{T_2}} = - \tau \widehat k \\
$
Step 4 of 5:
Use eq (1) to find Torque (2):
$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$
$
- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\
- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\
\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - \sqrt 3 {p_x}E$
Rearrange to find ${p_x}$:
${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)
Step 5 of 5:
Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$
${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:
\[
\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\
\theta = {\tan ^{ - 1}}\sqrt 3 \\
\theta = 60^\circ \\
\]
Correct Answer:
The angle $\theta $ is: (d) 60$^\circ $
Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.
Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE