
An electric dipole has a fixed dipole moment $\overrightarrow p $, which makes angle $\theta $ with respect to x-axis. When subjected to an electric field${\overrightarrow E _1} = E\widehat i$, it experiences a torque $\overrightarrow {{T_1}} = \tau \widehat k$. When subjected to another electric field $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$, it experiences torque $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $. The angle $\theta $ is:
(a) 90$^\circ $
(b) 30$^\circ $
(c) 45$^\circ $
(d) 60$^\circ $
Answer
589.2k+ views
Hint: Use the given Electric field vectors and resultant Torque to find the components of dipole moment. This can then be used to find the angle it makes with x-axis.
Formula used:
Torque:
$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)
where,
$\overrightarrow p $ is the dipole moment.
$\overrightarrow E $ is the Electric field.
Angle made by vector with x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)
where,
${p_y}$ is the y component of the vector $\overrightarrow p $
${p_x}$ is the x component of the vector $\overrightarrow p $
Step-by-step answer:
Given:
1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$
2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$
3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $
To find: The angle $\overrightarrow p $makes with x-axis.
Step 1 of 5:
Let $\overrightarrow p $ be the following:
\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]
Step 2 of 5:
Use eq (1) to find Torque (1):
$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$
$
\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\
\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\
\tau \widehat k = - {p_y}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - {p_y}E$
Rearrange to find ${p_y}$:
${p_y} = - \dfrac{\tau }{E}$ ……(3)
Step 3 of 5:
Find Electric field (2):
$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$
Find Torque (2):
$
\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\
\overrightarrow {{T_2}} = - \tau \widehat k \\
$
Step 4 of 5:
Use eq (1) to find Torque (2):
$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$
$
- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\
- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\
\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - \sqrt 3 {p_x}E$
Rearrange to find ${p_x}$:
${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)
Step 5 of 5:
Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$
${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:
\[
\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\
\theta = {\tan ^{ - 1}}\sqrt 3 \\
\theta = 60^\circ \\
\]
Correct Answer:
The angle $\theta $ is: (d) 60$^\circ $
Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.
Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.
Formula used:
Torque:
$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)
where,
$\overrightarrow p $ is the dipole moment.
$\overrightarrow E $ is the Electric field.
Angle made by vector with x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)
where,
${p_y}$ is the y component of the vector $\overrightarrow p $
${p_x}$ is the x component of the vector $\overrightarrow p $
Step-by-step answer:
Given:
1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$
2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$
3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $
To find: The angle $\overrightarrow p $makes with x-axis.
Step 1 of 5:
Let $\overrightarrow p $ be the following:
\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]
Step 2 of 5:
Use eq (1) to find Torque (1):
$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$
$
\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\
\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\
\tau \widehat k = - {p_y}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - {p_y}E$
Rearrange to find ${p_y}$:
${p_y} = - \dfrac{\tau }{E}$ ……(3)
Step 3 of 5:
Find Electric field (2):
$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$
Find Torque (2):
$
\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\
\overrightarrow {{T_2}} = - \tau \widehat k \\
$
Step 4 of 5:
Use eq (1) to find Torque (2):
$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$
$
- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\
- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\
\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - \sqrt 3 {p_x}E$
Rearrange to find ${p_x}$:
${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)
Step 5 of 5:
Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$
${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:
\[
\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\
\theta = {\tan ^{ - 1}}\sqrt 3 \\
\theta = 60^\circ \\
\]
Correct Answer:
The angle $\theta $ is: (d) 60$^\circ $
Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.
Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

