Answer

Verified

426.6k+ views

Hint: Use the given Electric field vectors and resultant Torque to find the components of dipole moment. This can then be used to find the angle it makes with x-axis.

Formula used:

Torque:

$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)

where,

$\overrightarrow p $ is the dipole moment.

$\overrightarrow E $ is the Electric field.

Angle made by vector with x-axis:

$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)

where,

${p_y}$ is the y component of the vector $\overrightarrow p $

${p_x}$ is the x component of the vector $\overrightarrow p $

Step-by-step answer:

Given:

1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$

2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$

3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$

4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $

To find: The angle $\overrightarrow p $makes with x-axis.

Step 1 of 5:

Let $\overrightarrow p $ be the following:

\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]

Step 2 of 5:

Use eq (1) to find Torque (1):

$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$

$

\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\

\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\

\tau \widehat k = - {p_y}E\widehat k \\

$

Compare the magnitudes of unit vectors on LHS and RHS:

$\tau = - {p_y}E$

Rearrange to find ${p_y}$:

${p_y} = - \dfrac{\tau }{E}$ ……(3)

Step 3 of 5:

Find Electric field (2):

$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$

$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$

Find Torque (2):

$

\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\

\overrightarrow {{T_2}} = - \tau \widehat k \\

$

Step 4 of 5:

Use eq (1) to find Torque (2):

$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$

$

- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\

- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\

\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\

$

Compare the magnitudes of unit vectors on LHS and RHS:

$\tau = - \sqrt 3 {p_x}E$

Rearrange to find ${p_x}$:

${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)

Step 5 of 5:

Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:

$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$

${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:

\[

\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\

\theta = {\tan ^{ - 1}}\sqrt 3 \\

\theta = 60^\circ \\

\]

Correct Answer:

The angle $\theta $ is: (d) 60$^\circ $

Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.

Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.

Formula used:

Torque:

$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)

where,

$\overrightarrow p $ is the dipole moment.

$\overrightarrow E $ is the Electric field.

Angle made by vector with x-axis:

$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)

where,

${p_y}$ is the y component of the vector $\overrightarrow p $

${p_x}$ is the x component of the vector $\overrightarrow p $

Step-by-step answer:

Given:

1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$

2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$

3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$

4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $

To find: The angle $\overrightarrow p $makes with x-axis.

Step 1 of 5:

Let $\overrightarrow p $ be the following:

\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]

Step 2 of 5:

Use eq (1) to find Torque (1):

$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$

$

\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\

\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\

\tau \widehat k = - {p_y}E\widehat k \\

$

Compare the magnitudes of unit vectors on LHS and RHS:

$\tau = - {p_y}E$

Rearrange to find ${p_y}$:

${p_y} = - \dfrac{\tau }{E}$ ……(3)

Step 3 of 5:

Find Electric field (2):

$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$

$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$

Find Torque (2):

$

\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\

\overrightarrow {{T_2}} = - \tau \widehat k \\

$

Step 4 of 5:

Use eq (1) to find Torque (2):

$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$

$

- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\

- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\

\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\

$

Compare the magnitudes of unit vectors on LHS and RHS:

$\tau = - \sqrt 3 {p_x}E$

Rearrange to find ${p_x}$:

${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)

Step 5 of 5:

Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:

$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$

${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:

\[

\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\

\theta = {\tan ^{ - 1}}\sqrt 3 \\

\theta = 60^\circ \\

\]

Correct Answer:

The angle $\theta $ is: (d) 60$^\circ $

Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.

Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How many crores make 10 million class 7 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE