An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and the fourth shot is 0.4, 0.3, 0.2, and 0.1 respectively. What is the probability that the plane gets hit?
$
(a){\text{ 0}}{\text{.6976}} \\
(b){\text{ 0}}{\text{.7976}} \\
(c){\text{ 0}}{\text{.3024}} \\
(d){\text{ None of these}} \\
$
Last updated date: 19th Mar 2023
•
Total views: 305.1k
•
Views today: 4.84k
Answer
305.1k+ views
Hint – In this various probabilities of hitting a plane at different rounds by an anti-craft gun is given to us. We need to find the probability of hitting a plane. So if a plane is to be hit only that it can be hit in the first round, this means it shouldn’t be hit in the second, third or fourth round. This similar concept can be extended to hit the plane in round. Use this concept along with the probability identity that probability of occurring + probability of non-occurring is equal to 1.
“Complete step-by-step answer:”
Given data
Probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1.
Then we have to find out the probability that the plane gets hit.
Probability of hitting the plane at first time $\left( {{p_1}} \right) = 0.4$
Therefore probability of not hitting the plane at first time $\left( {{q_1}} \right) = 1 - 0.4 = 0.6$
Probability of hitting the plane at second time $\left( {{p_2}} \right) = 0.3$
Therefore probability of not hitting the plane at second time $\left( {{q_2}} \right) = 1 - 0.3 = 0.7$
Probability of hitting the plane at third time $\left( {{p_3}} \right) = 0.2$
Therefore probability of not hitting the plane at third time $\left( {{q_3}} \right) = 1 - 0.2 = 0.8$
Probability of hitting the plane at fourth time $\left( {{p_4}} \right) = 0.1$
Therefore probability of not hitting the plane at fourth time $\left( {{q_4}} \right) = 1 - 0.1 = 0.9$
So the required probability (P) of hitting the plane is the addition of plane get hit first time, plane not hit first time multiplied by plane get hit second time, plane not hit first time multiplied by plane not hit second time multiplied by plane get hit third time and plane not hit first time multiplied by plane not hit second time multiplied by plane not hit third time multiplied by plane get hit fourth time.
$ \Rightarrow p = {p_1} + {q_1}{p_2} + {q_1}{q_2}{p_3} + {q_1}{q_2}{q_3}{p_4}$
$ \Rightarrow p = 0.4 + \left( {0.6 \times 0.3} \right) + \left( {0.6 \times 0.7 \times 0.2} \right) + \left( {0.6 \times 0.7 \times 0.8 \times 0.1} \right)$
$ \Rightarrow p = 0.4 + 0.18 + 0.084 + 0.0336$
$ \Rightarrow p = 0.6976$.
So this is the required probability of getting the plane hit.
Hence option (a) is correct.
Note – Whenever we face such types of problems the key concept is simply to use the property of probability that total probability is always equal to one. Try to think of each and every possible scenario in which the plane can be shot by the machine-gun once only. This will help you get on track to reach the answer.
“Complete step-by-step answer:”
Given data
Probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1.
Then we have to find out the probability that the plane gets hit.
Probability of hitting the plane at first time $\left( {{p_1}} \right) = 0.4$
Therefore probability of not hitting the plane at first time $\left( {{q_1}} \right) = 1 - 0.4 = 0.6$
Probability of hitting the plane at second time $\left( {{p_2}} \right) = 0.3$
Therefore probability of not hitting the plane at second time $\left( {{q_2}} \right) = 1 - 0.3 = 0.7$
Probability of hitting the plane at third time $\left( {{p_3}} \right) = 0.2$
Therefore probability of not hitting the plane at third time $\left( {{q_3}} \right) = 1 - 0.2 = 0.8$
Probability of hitting the plane at fourth time $\left( {{p_4}} \right) = 0.1$
Therefore probability of not hitting the plane at fourth time $\left( {{q_4}} \right) = 1 - 0.1 = 0.9$
So the required probability (P) of hitting the plane is the addition of plane get hit first time, plane not hit first time multiplied by plane get hit second time, plane not hit first time multiplied by plane not hit second time multiplied by plane get hit third time and plane not hit first time multiplied by plane not hit second time multiplied by plane not hit third time multiplied by plane get hit fourth time.
$ \Rightarrow p = {p_1} + {q_1}{p_2} + {q_1}{q_2}{p_3} + {q_1}{q_2}{q_3}{p_4}$
$ \Rightarrow p = 0.4 + \left( {0.6 \times 0.3} \right) + \left( {0.6 \times 0.7 \times 0.2} \right) + \left( {0.6 \times 0.7 \times 0.8 \times 0.1} \right)$
$ \Rightarrow p = 0.4 + 0.18 + 0.084 + 0.0336$
$ \Rightarrow p = 0.6976$.
So this is the required probability of getting the plane hit.
Hence option (a) is correct.
Note – Whenever we face such types of problems the key concept is simply to use the property of probability that total probability is always equal to one. Try to think of each and every possible scenario in which the plane can be shot by the machine-gun once only. This will help you get on track to reach the answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
