
An alternating voltage is concerned in series with a resistance $r$ and inductance $L$. If the potential drop across the resistance is $200$ volt and across the inductance is $150$ volt. The applied voltage is:
A. $350\text{ V}$
B. $250\text{ V}$
C. $500\text{ V}$
D. $300\text{ V}$
Answer
411.9k+ views
Hint: To solve these types of questions we need to know about the $RL$ circuit. A $RL$ circuit is an electric circuit that is made up of resistors and inductors. In the question it is mentioned that an alternating voltage is concerned in series with a resistance $r$ and inductance $L$, hence the same current will flow through the inductor and resistor.
Formula used:
$V=\sqrt{{{\left( {{V}_{R}} \right)}^{2}}+{{\left( {{V}_{L}} \right)}^{2}}}$
Here $V$ is the applied voltage,
${{V}_{R}}$ is the potential drop across the resistance of the circuit,
${{V}_{L}}$ is the potential drop across the inductance.
Complete step-by-step solution:
Let us assume that current $''i''$ flows through the circuit. Since the resistance $r$ and inductance $L$ are connected in series hence the same current will flow through them. The potential difference across the inductor $\left( {{V}_{L}} \right)$ leads the current by $\dfrac{\pi }{2}$ while the potential difference across the resistor $\left( {{V}_{R}} \right)$ will be in phase with the current, hence the resultant potential difference i.e., the applied potential difference will be as follows:
$V=\sqrt{{{\left( {{V}_{R}} \right)}^{2}}+{{\left( {{V}_{L}} \right)}^{2}}}$
It is given in the question that the potential drop across the resistance is $200$ volt and across the inductance is $150$ volt, thus on substituting the values in the equation, the applied voltage will be:
$\begin{align}
& V=\sqrt{{{\left( 200 \right)}^{2}}+{{\left( 150 \right)}^{2}}} \\
& \Rightarrow V=\sqrt{40000+22500} \\
& \Rightarrow V=\sqrt{62500} \\
& \therefore V=250\text{ V} \\
\end{align}$
Hence, the applied voltage will be $250\text{ V}$ and the correct option will be $B$.
Note: To solve these types of questions, we need to remember the phase difference between the potential difference and current in various electrical components of the circuit. It must be remembered that in a $RL$ circuit the potential difference across the inductor $\left( {{V}_{L}} \right)$ leads the current by $\dfrac{\pi }{2}$, across the resistor $\left( {{V}_{R}} \right)$ is in phase with the current.
Formula used:
$V=\sqrt{{{\left( {{V}_{R}} \right)}^{2}}+{{\left( {{V}_{L}} \right)}^{2}}}$
Here $V$ is the applied voltage,
${{V}_{R}}$ is the potential drop across the resistance of the circuit,
${{V}_{L}}$ is the potential drop across the inductance.
Complete step-by-step solution:
Let us assume that current $''i''$ flows through the circuit. Since the resistance $r$ and inductance $L$ are connected in series hence the same current will flow through them. The potential difference across the inductor $\left( {{V}_{L}} \right)$ leads the current by $\dfrac{\pi }{2}$ while the potential difference across the resistor $\left( {{V}_{R}} \right)$ will be in phase with the current, hence the resultant potential difference i.e., the applied potential difference will be as follows:
$V=\sqrt{{{\left( {{V}_{R}} \right)}^{2}}+{{\left( {{V}_{L}} \right)}^{2}}}$
It is given in the question that the potential drop across the resistance is $200$ volt and across the inductance is $150$ volt, thus on substituting the values in the equation, the applied voltage will be:
$\begin{align}
& V=\sqrt{{{\left( 200 \right)}^{2}}+{{\left( 150 \right)}^{2}}} \\
& \Rightarrow V=\sqrt{40000+22500} \\
& \Rightarrow V=\sqrt{62500} \\
& \therefore V=250\text{ V} \\
\end{align}$
Hence, the applied voltage will be $250\text{ V}$ and the correct option will be $B$.
Note: To solve these types of questions, we need to remember the phase difference between the potential difference and current in various electrical components of the circuit. It must be remembered that in a $RL$ circuit the potential difference across the inductor $\left( {{V}_{L}} \right)$ leads the current by $\dfrac{\pi }{2}$, across the resistor $\left( {{V}_{R}} \right)$ is in phase with the current.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

How much time does it take to bleed after eating p class 12 biology CBSE
