When alternating current flows through a conductor, the flux change:
(A) is higher in the inner part of the conductor
(B) is lower in the inner part of the conductor
(C) is uniform throughout the conductor
(D) Depends upon the resistivity of the conductor
Answer
280.8k+ views
Hint: Alternating current is one in which the direction of current changes in every particular fixed time and this time is called its time period and inverse of the time period called its frequency of an alternating current while direct current always flows in only one particular direction.
Complete step-by-step solution:
Let us suppose the current flowing in an AC circuit is given as:
$i = {i_0}\sin (\omega t + \theta )$ Now, we need to determine the rate of change of flux
As, flux $\phi = Li$
Change of flux is:
$\dfrac{{d\phi }}{{dt}} = L\dfrac{{di}}{{dt}}$
Which can be written as
$\dfrac{{d\phi }}{{dt}} = L{i_0}\dfrac{{d\sin (\omega t + \theta )}}{{dt}}$
$\dfrac{{d\phi }}{{dt}} = L{i_0}\omega \cos (\omega t + \theta )$
Since, $L$ is the inductance of the conductor which remains constant with time
${i_0}$ Is the maximum value of current in alternating circuit so, its value also remain fixed with time
Hence, the rate of change of flux is not dependent upon the inner or outer radius or lengths of the conductor, its remaining constant uniformly throughout the whole conductor.
Hence, the correct option is (C) is uniform throughout the conductor.
Note: Since, alternating current direction changes with time so, the direction of flux changes with the direction of current in every phase but the magnitude of rate of change of flux remains same in every phase and is always independent of length and have a uniform constant value with time.
Complete step-by-step solution:
Let us suppose the current flowing in an AC circuit is given as:
$i = {i_0}\sin (\omega t + \theta )$ Now, we need to determine the rate of change of flux
As, flux $\phi = Li$
Change of flux is:
$\dfrac{{d\phi }}{{dt}} = L\dfrac{{di}}{{dt}}$
Which can be written as
$\dfrac{{d\phi }}{{dt}} = L{i_0}\dfrac{{d\sin (\omega t + \theta )}}{{dt}}$
$\dfrac{{d\phi }}{{dt}} = L{i_0}\omega \cos (\omega t + \theta )$
Since, $L$ is the inductance of the conductor which remains constant with time
${i_0}$ Is the maximum value of current in alternating circuit so, its value also remain fixed with time
Hence, the rate of change of flux is not dependent upon the inner or outer radius or lengths of the conductor, its remaining constant uniformly throughout the whole conductor.
Hence, the correct option is (C) is uniform throughout the conductor.
Note: Since, alternating current direction changes with time so, the direction of flux changes with the direction of current in every phase but the magnitude of rate of change of flux remains same in every phase and is always independent of length and have a uniform constant value with time.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
