
A weather balloon filled with hydrogen at 1 atm and $\text{2}{{\text{7}}^{\text{0}}}\text{C}$ has volume equal to \[\text{12000 litres}\]. On ascending it roaches a place where the temperature is $-\text{2}{{\text{3}}^{\text{0}}}\text{C}$ and pressure is$\text{0}\text{.5 atm}$. The volume of the balloon is
A) \[\text{24000 litres}\]
B) \[\text{20000 litres}\]
C) \[\text{10000 litres}\]
D) \[\text{12000 litres}\]
Answer
233.1k+ views
Hint: The combined gas law states the relation between Boyle’s, Charles, and Gay-Lussac’s law. According to which the ratio of the product of pressure and temperature to the absolute temperature in kelvin is constant. The T, P, and V of the gas changes with the altitude thus apply the combined gas law to obtain the unknown value.
\[\dfrac{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}}\text{ = }\dfrac{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}{{{\text{T}}_{\text{2}}}}\]
Complete step by step solution:
We know that different laws state the relation between the pressure, volume, temperature, and the number of moles of gas. The combined gas law is a law that combines the three gas laws: Boyle’s law, Charles’ law, and Gay-Lussac’s law. According to the combined gas law, the ratio of the product of pressure (P) and volume (V) at the absolute temperature (T) is always equal to constant. It is applicable when the system changes pressure, temperature, and volume. The common formula for the combined gas law which is used to relate the before and after situation of gas is as:
\[\text{ }\dfrac{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}}\text{ = }\dfrac{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}{{{\text{T}}_{\text{2}}}}\text{ or }\dfrac{{{\text{P}}_{\text{Initial}}}{{\text{V}}_{\text{Initial}}}}{{{\text{T}}_{\text{Initial}}}}\text{ = }\dfrac{{{\text{P}}_{\text{Final}}}{{\text{V}}_{\text{Final}}}}{{{\text{T}}_{\text{Final}}}}\text{ }\]
In the problem, the weather balloon is filled with $\text{ }{{\text{H}}_{\text{2}}}$gas and allowed to move upward. The given data is as follows:
$\begin{align}
& {{\text{P}}_{\text{1}}}\text{=1 atm } \\
& {{\text{T}}_{\text{1}}}\text{ = 2}{{\text{7}}^{\text{0}}}\text{C = 2}{{\text{7}}^{\text{0}}}\text{C + 273K= 300 K} \\
& {{\text{V}}_{\text{1}}}\text{= 12000 Litres} \\
& {{\text{P}}_{\text{2}}}\text{= 0}\text{.5 atm } \\
& {{\text{T}}_{\text{1}}}\text{ = }-\text{2}{{\text{3}}^{\text{0}}}\text{C = }-\text{2}{{\text{3}}^{\text{0}}}\text{C + 273K= 250 K} \\
& {{\text{V}}_{\text{1}}}\text{=To find} \\
\end{align}$
Let us apply the combined gas law.
\[\dfrac{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}}\text{ = }\dfrac{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}{{{\text{T}}_{\text{2}}}}\]
Substitute the values for the pressure, temperature, and volume in the combined gas law. we get,
\[\begin{align}
& \dfrac{\left( 1\text{ atm} \right)\left( 12000\text{ liter} \right)}{\left( 300\text{ K} \right)}\text{ = }\dfrac{\left( 0.5\text{ atm} \right){{\text{V}}_{\text{2}}}}{\left( 250\text{ K} \right)} \\
& {{\text{V}}_{\text{2}}}=\text{ }\dfrac{\left( 1\text{ atm} \right)\left( 12000\text{ liter} \right)\left( 250\text{ K} \right)}{\left( 300\text{ K} \right)\left( 0.5\text{ atm} \right)} \\
& {{\text{V}}_{\text{2}}}=\text{ }\dfrac{\left( 1\text{ at} \right)\left( 12000\text{ liter} \right)\left( 250\text{ } \right)}{\left( 300\text{ } \right)\left( 0.5\text{ at} \right)} \\
& {{\text{V}}_{\text{2}}}=\text{ }\dfrac{\left( 3000000 \right)}{\left( 150 \right)}\text{liter} \\
& {{\text{V}}_{\text{2}}}=\text{ 20000 liter} \\
\end{align}\]
Therefore the volume of the gas at the $\text{-2}{{\text{3}}^{\text{0}}}\text{C}$ temperature and $\text{0}\text{.5 atm}$is\[\text{20000 liter}\].
Hence, (B) is the correct option.
Note: Such a question can be asked at the STP condition. Such problems appear a lot thus memorize it.The STP stands for the “standard temperature and pressure” which is $273\text{ K}$ and $760\text{ mm of Hg}$ or $1\text{ atm}$ pressure.
\[\dfrac{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}}\text{ = }\dfrac{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}{{{\text{T}}_{\text{2}}}}\]
Complete step by step solution:
We know that different laws state the relation between the pressure, volume, temperature, and the number of moles of gas. The combined gas law is a law that combines the three gas laws: Boyle’s law, Charles’ law, and Gay-Lussac’s law. According to the combined gas law, the ratio of the product of pressure (P) and volume (V) at the absolute temperature (T) is always equal to constant. It is applicable when the system changes pressure, temperature, and volume. The common formula for the combined gas law which is used to relate the before and after situation of gas is as:
\[\text{ }\dfrac{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}}\text{ = }\dfrac{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}{{{\text{T}}_{\text{2}}}}\text{ or }\dfrac{{{\text{P}}_{\text{Initial}}}{{\text{V}}_{\text{Initial}}}}{{{\text{T}}_{\text{Initial}}}}\text{ = }\dfrac{{{\text{P}}_{\text{Final}}}{{\text{V}}_{\text{Final}}}}{{{\text{T}}_{\text{Final}}}}\text{ }\]
In the problem, the weather balloon is filled with $\text{ }{{\text{H}}_{\text{2}}}$gas and allowed to move upward. The given data is as follows:
$\begin{align}
& {{\text{P}}_{\text{1}}}\text{=1 atm } \\
& {{\text{T}}_{\text{1}}}\text{ = 2}{{\text{7}}^{\text{0}}}\text{C = 2}{{\text{7}}^{\text{0}}}\text{C + 273K= 300 K} \\
& {{\text{V}}_{\text{1}}}\text{= 12000 Litres} \\
& {{\text{P}}_{\text{2}}}\text{= 0}\text{.5 atm } \\
& {{\text{T}}_{\text{1}}}\text{ = }-\text{2}{{\text{3}}^{\text{0}}}\text{C = }-\text{2}{{\text{3}}^{\text{0}}}\text{C + 273K= 250 K} \\
& {{\text{V}}_{\text{1}}}\text{=To find} \\
\end{align}$
Let us apply the combined gas law.
\[\dfrac{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}}\text{ = }\dfrac{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}{{{\text{T}}_{\text{2}}}}\]
Substitute the values for the pressure, temperature, and volume in the combined gas law. we get,
\[\begin{align}
& \dfrac{\left( 1\text{ atm} \right)\left( 12000\text{ liter} \right)}{\left( 300\text{ K} \right)}\text{ = }\dfrac{\left( 0.5\text{ atm} \right){{\text{V}}_{\text{2}}}}{\left( 250\text{ K} \right)} \\
& {{\text{V}}_{\text{2}}}=\text{ }\dfrac{\left( 1\text{ atm} \right)\left( 12000\text{ liter} \right)\left( 250\text{ K} \right)}{\left( 300\text{ K} \right)\left( 0.5\text{ atm} \right)} \\
& {{\text{V}}_{\text{2}}}=\text{ }\dfrac{\left( 1\text{ at} \right)\left( 12000\text{ liter} \right)\left( 250\text{ } \right)}{\left( 300\text{ } \right)\left( 0.5\text{ at} \right)} \\
& {{\text{V}}_{\text{2}}}=\text{ }\dfrac{\left( 3000000 \right)}{\left( 150 \right)}\text{liter} \\
& {{\text{V}}_{\text{2}}}=\text{ 20000 liter} \\
\end{align}\]
Therefore the volume of the gas at the $\text{-2}{{\text{3}}^{\text{0}}}\text{C}$ temperature and $\text{0}\text{.5 atm}$is\[\text{20000 liter}\].
Hence, (B) is the correct option.
Note: Such a question can be asked at the STP condition. Such problems appear a lot thus memorize it.The STP stands for the “standard temperature and pressure” which is $273\text{ K}$ and $760\text{ mm of Hg}$ or $1\text{ atm}$ pressure.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

