
A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (\[{K_t}\]) as well as rotational kinetic energy (\[{K_r}\]) simultaneously. The ratio \[{K_t}:\left( {{K_t} + {K_r}} \right)\] for the sphere is:
(A) \[10:7\]
(B) \[5:7\;\]
(C) \[7:10\]
(D) \[2:5\]
Answer
216k+ views
HintWe will use the concept of analogy of translatory motion and rotatory motion. We will find the equivalent relations for both the motions. Finally, we will find their ratio.
Formulae Used \[{K_t} = \frac{1}{2}m{v^2}\] And \[{K_r} = \frac{1}{5}m{v^2}\]
Step By Step Solution
Let the mass of the sphere be $m$ , its velocity be $v$ .
Now,
The translational kinetic energy , \[{K_t} = \frac{1}{2}m{v^2}\]
Then,
For the rotatory motion,
Moment of inertia $I$ is analogical to mass in translational motion.
Thus,
For sphere, \[I = \frac{2}{5}m{r^2}\]
Similarly,
Angular velocity $\omega $ is analogical to velocity in translational motion.
Thus,
For Sphere, $\omega = \frac{v}{r}$
Here,
$r$ is the radius of the sphere.
Now,
Rotational kinetic energy, \[{K_r} = \frac{1}{2}I{\omega ^2}\]
Thus,
Substituting the values, we get
\[{K_r} = \frac{1}{2} \times \frac{2}{5}m{r^2}\frac{{{v^2}}}{{{r^2}}}\]
Thus, we get
\[{K_r} = \frac{1}{5}m{v^2}\]
Now,
\[\left( {{K_t} + {K_r}} \right) = \frac{1}{2}m{v^2} + \frac{1}{5}m{v^2} = \frac{7}{{10}}m{v^2}\]
Thus,
\[{K_t}:\left( {{K_t} + {K_r}} \right) = \frac{1}{2}:\frac{7}{{10}} = 5:7\]
Hence,
The answer is (2).
Additional Information The moment of inertia we discussed is a parameter which comes from the observation that a rotating body acts as if all its mass is concentrated at a single point. Also the radius through which it rotates deviates from the original position of the actual one.
The translational motion and the rotatory motion are analogous at every aspect of parameters starting from radius to centripetal force.
Note: For calculating the rotatory kinetic energy, we assumed that the sphere was rotating about a fixed axis perpendicular to its plane and passing through its center. We can also take it to be random. But the calculations then become very clumsy. Though the answer will be the same.
Formulae Used \[{K_t} = \frac{1}{2}m{v^2}\] And \[{K_r} = \frac{1}{5}m{v^2}\]
Step By Step Solution
Let the mass of the sphere be $m$ , its velocity be $v$ .
Now,
The translational kinetic energy , \[{K_t} = \frac{1}{2}m{v^2}\]
Then,
For the rotatory motion,
Moment of inertia $I$ is analogical to mass in translational motion.
Thus,
For sphere, \[I = \frac{2}{5}m{r^2}\]
Similarly,
Angular velocity $\omega $ is analogical to velocity in translational motion.
Thus,
For Sphere, $\omega = \frac{v}{r}$
Here,
$r$ is the radius of the sphere.
Now,
Rotational kinetic energy, \[{K_r} = \frac{1}{2}I{\omega ^2}\]
Thus,
Substituting the values, we get
\[{K_r} = \frac{1}{2} \times \frac{2}{5}m{r^2}\frac{{{v^2}}}{{{r^2}}}\]
Thus, we get
\[{K_r} = \frac{1}{5}m{v^2}\]
Now,
\[\left( {{K_t} + {K_r}} \right) = \frac{1}{2}m{v^2} + \frac{1}{5}m{v^2} = \frac{7}{{10}}m{v^2}\]
Thus,
\[{K_t}:\left( {{K_t} + {K_r}} \right) = \frac{1}{2}:\frac{7}{{10}} = 5:7\]
Hence,
The answer is (2).
Additional Information The moment of inertia we discussed is a parameter which comes from the observation that a rotating body acts as if all its mass is concentrated at a single point. Also the radius through which it rotates deviates from the original position of the actual one.
The translational motion and the rotatory motion are analogous at every aspect of parameters starting from radius to centripetal force.
Note: For calculating the rotatory kinetic energy, we assumed that the sphere was rotating about a fixed axis perpendicular to its plane and passing through its center. We can also take it to be random. But the calculations then become very clumsy. Though the answer will be the same.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

