
A radioactive Nucleus X converts into a stable Nucleus Y. Half-life of X is 50 year. Calculate the age of the radioactive sample when the ratio of X to Y is 1:15.
Answer
447k+ views
Hint: This can be solved by laws of radioactive disintegration. The no. of atoms disintegrated per second at any instant is given by radioactive decay law.
$ \text{N}={{\text{N}}_{\text{0}}}{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
Here, N0 is No. of atoms originally present.
N is no. of atoms left undecayed in sample t
$ \lambda $ is decay constant.
Relation between half-life and decay constant is,
$ \text{T}=\dfrac{\text{0}\cdot \text{6931}}{\text{ }\!\!\lambda\!\!\text{ }} $ , This is used to calculate decay constant.
Complete Step By Step Solution
We have given Nucleus X whose initial value is $ {{\text{X}}_{0}} $ . Since it converts into Y nucleus after decay,
Ratio of X and Y element is given by $ \dfrac{1}{15} $
Now, $ \text{X}+\text{Y}={{\text{Y}}_{0}} $
$ \text{X}+\text{15X }=\text{ }{{\text{X}}_{0}} $
$ \text{16X}={{\text{X}}_{0}} $
$ \dfrac{{{\text{X}}_{0}}}{\text{X}}=16 $
Or, $ \dfrac{{{\text{N}}_{0}}}{\text{N}}=16 $ where $ {{\text{N}}_{0}} $ and N is the No. of atoms present initially and after decay.
Use radioactive decay law,
$ \text{N}={{\text{N}}_{\text{0}}}{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $ --------(1)
$ \text{ }\!\!\lambda\!\!\text{ } $ is decay constant.
t is age of sample
Now, calculate the decay constant from the
Half-life of X = 50 years.
$ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{50} $
From eq. (1)
$ \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}={{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
In $ \dfrac{{{\text{N}}_{\text{0}}}}{\text{N}}=\text{ }\!\!\lambda\!\!\text{ t} $
$ 2\cdot 303\log \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}=\text{ }\!\!\lambda\!\!\text{ t} $
Use the value of $ \dfrac{{{\text{N}}_{\text{0}}}}{\text{N}} $ and $ \lambda $ in above eq.
$ 2\cdot 303\log 16=\dfrac{0\cdot 693}{50}\text{t} $
$ \text{t}=\dfrac{50}{0\cdot 693}\times 2\cdot 303\times \log {{2}^{4}} $
$ t=\dfrac{50}{0\cdot 693}\times 2\cdot 303\times 4\log 2 $
$ \text{ }\!\![\!\!\text{ }\therefore \text{log}{{\text{n}}^{\text{m}}}\text{=m logn }\!\!]\!\!\text{ } $
$ \text{t}=200 $ year
This is the required result.
Note
We can also use another formula, $ \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}={{\left( \dfrac{1}{2} \right)}^{^{\dfrac{\text{t}}{\text{T}}}}} $
Here, T is half-life
t is the age of radioactive samples.
Use, $ \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}\text{=}\left( \dfrac{\text{1}}{\text{16}} \right) $ , T = 50 year. (given in question).
$ \dfrac{1}{16}={{\left( \dfrac{1}{2} \right)}^{\dfrac{t}{50}}} $
$ {{\left( 2 \right)}^{-4}}={{\left( 2 \right)}^{\dfrac{-t}{50}}} $
Taking antilog on both sides
$ -4=\dfrac{-t}{50} $ .
t = 200 year.
$ \text{N}={{\text{N}}_{\text{0}}}{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
Here, N0 is No. of atoms originally present.
N is no. of atoms left undecayed in sample t
$ \lambda $ is decay constant.
Relation between half-life and decay constant is,
$ \text{T}=\dfrac{\text{0}\cdot \text{6931}}{\text{ }\!\!\lambda\!\!\text{ }} $ , This is used to calculate decay constant.
Complete Step By Step Solution
We have given Nucleus X whose initial value is $ {{\text{X}}_{0}} $ . Since it converts into Y nucleus after decay,
Ratio of X and Y element is given by $ \dfrac{1}{15} $
Now, $ \text{X}+\text{Y}={{\text{Y}}_{0}} $
$ \text{X}+\text{15X }=\text{ }{{\text{X}}_{0}} $
$ \text{16X}={{\text{X}}_{0}} $
$ \dfrac{{{\text{X}}_{0}}}{\text{X}}=16 $
Or, $ \dfrac{{{\text{N}}_{0}}}{\text{N}}=16 $ where $ {{\text{N}}_{0}} $ and N is the No. of atoms present initially and after decay.
Use radioactive decay law,
$ \text{N}={{\text{N}}_{\text{0}}}{{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $ --------(1)
$ \text{ }\!\!\lambda\!\!\text{ } $ is decay constant.
t is age of sample
Now, calculate the decay constant from the
Half-life of X = 50 years.
$ \text{ }\!\!\lambda\!\!\text{ }=\dfrac{0\cdot 693}{50} $
From eq. (1)
$ \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}={{\text{e}}^{-\text{ }\!\!\lambda\!\!\text{ t}}} $
In $ \dfrac{{{\text{N}}_{\text{0}}}}{\text{N}}=\text{ }\!\!\lambda\!\!\text{ t} $
$ 2\cdot 303\log \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}=\text{ }\!\!\lambda\!\!\text{ t} $
Use the value of $ \dfrac{{{\text{N}}_{\text{0}}}}{\text{N}} $ and $ \lambda $ in above eq.
$ 2\cdot 303\log 16=\dfrac{0\cdot 693}{50}\text{t} $
$ \text{t}=\dfrac{50}{0\cdot 693}\times 2\cdot 303\times \log {{2}^{4}} $
$ t=\dfrac{50}{0\cdot 693}\times 2\cdot 303\times 4\log 2 $
$ \text{ }\!\![\!\!\text{ }\therefore \text{log}{{\text{n}}^{\text{m}}}\text{=m logn }\!\!]\!\!\text{ } $
$ \text{t}=200 $ year
This is the required result.
Note
We can also use another formula, $ \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}={{\left( \dfrac{1}{2} \right)}^{^{\dfrac{\text{t}}{\text{T}}}}} $
Here, T is half-life
t is the age of radioactive samples.
Use, $ \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}\text{=}\left( \dfrac{\text{1}}{\text{16}} \right) $ , T = 50 year. (given in question).
$ \dfrac{1}{16}={{\left( \dfrac{1}{2} \right)}^{\dfrac{t}{50}}} $
$ {{\left( 2 \right)}^{-4}}={{\left( 2 \right)}^{\dfrac{-t}{50}}} $
Taking antilog on both sides
$ -4=\dfrac{-t}{50} $ .
t = 200 year.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
