
A particle starts from rest and its angular displacement (in radians) is given by $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$. If the angular velocity at the end of $t=4s$ is $'k'$. Then, what will be the value of $'5k'$ ?
Answer
613.8k+ views
Hint: The angular velocity as a function of time can be found out by differentiating angular displacement $\theta $ with respect to time.
Before proceeding with the question, we must know that the angular velocity (which is generally denoted by $\omega $) as a function of time can be found by simply differentiating the angular displacement $\theta $ with respect to time. Mathematically, we get,
$\omega =\dfrac{d\theta }{dt}............\left( 1 \right)$
Here, in this formula, $\theta $ should be a function of time $t$.
In this question, it is given that $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$. Substituting $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$ in equation $\left( 1 \right)$, we can find angular velocity as a function of time.
$\begin{align}
& \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20}+\dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20} \right)}{dt}+\dfrac{d\left( \dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{1}{20}\dfrac{d\left( {{t}^{2}} \right)}{dt}+\dfrac{1}{5}\dfrac{d\left( t \right)}{dt}...............\left( 2 \right) \\
\end{align}$
In differentiation, we have a formula,
$\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t...........\left( 3 \right)$
Substituting $\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t$ from equation$\left( 3 \right)$ in equation $\left( 2 \right)$, we get,
$\begin{align}
& \omega =\dfrac{1}{20}\left( 2t \right)+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{t}{10}+\dfrac{1}{5}...........\left( 4 \right) \\
\end{align}$
In the question, it is given that the angular velocity $\omega $ at $t=4s$ is equal to $k$. Substituting $t=4s$in equation $\left( 4 \right)$, we get,
$\begin{align}
& \omega =\dfrac{4}{10}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{2}{5}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{3}{5} \\
\end{align}$
This angular velocity which we got in the above equation is equal to $k$, so, we can say,
$k=\dfrac{3}{5}..........\left( 5 \right)$
In the question, we are asked to find out the value of $5k$. So, using equation $\left( 5 \right)$, the value of $5k$ is equal to,
$\begin{align}
& 5k=5\left( \dfrac{3}{5} \right) \\
& \Rightarrow 5k=3 \\
\end{align}$
Hence, the answer is $3$.
Note: There is a possibility that one may commit a mistake while finding the angular velocity $\omega $ as a function of time. Sometimes, we integrate the angular displacement $\theta $ with respect to time to find the angular velocity instead of differentiating the angular displacement. So one must remember that angular velocity is found by differentiating the angular displacement function with respect to time
Before proceeding with the question, we must know that the angular velocity (which is generally denoted by $\omega $) as a function of time can be found by simply differentiating the angular displacement $\theta $ with respect to time. Mathematically, we get,
$\omega =\dfrac{d\theta }{dt}............\left( 1 \right)$
Here, in this formula, $\theta $ should be a function of time $t$.
In this question, it is given that $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$. Substituting $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$ in equation $\left( 1 \right)$, we can find angular velocity as a function of time.
$\begin{align}
& \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20}+\dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20} \right)}{dt}+\dfrac{d\left( \dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{1}{20}\dfrac{d\left( {{t}^{2}} \right)}{dt}+\dfrac{1}{5}\dfrac{d\left( t \right)}{dt}...............\left( 2 \right) \\
\end{align}$
In differentiation, we have a formula,
$\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t...........\left( 3 \right)$
Substituting $\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t$ from equation$\left( 3 \right)$ in equation $\left( 2 \right)$, we get,
$\begin{align}
& \omega =\dfrac{1}{20}\left( 2t \right)+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{t}{10}+\dfrac{1}{5}...........\left( 4 \right) \\
\end{align}$
In the question, it is given that the angular velocity $\omega $ at $t=4s$ is equal to $k$. Substituting $t=4s$in equation $\left( 4 \right)$, we get,
$\begin{align}
& \omega =\dfrac{4}{10}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{2}{5}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{3}{5} \\
\end{align}$
This angular velocity which we got in the above equation is equal to $k$, so, we can say,
$k=\dfrac{3}{5}..........\left( 5 \right)$
In the question, we are asked to find out the value of $5k$. So, using equation $\left( 5 \right)$, the value of $5k$ is equal to,
$\begin{align}
& 5k=5\left( \dfrac{3}{5} \right) \\
& \Rightarrow 5k=3 \\
\end{align}$
Hence, the answer is $3$.
Note: There is a possibility that one may commit a mistake while finding the angular velocity $\omega $ as a function of time. Sometimes, we integrate the angular displacement $\theta $ with respect to time to find the angular velocity instead of differentiating the angular displacement. So one must remember that angular velocity is found by differentiating the angular displacement function with respect to time
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

