Answer
Verified
493.5k+ views
Hint: In this question, we use the formula of work done by the force. when a force is applied to an object, causing displacement. When the force is represented by the vector \[\mathop F\limits^ \to \] and the displacement is represented by the vector \[\mathop S\limits^ \to \] then the work done W is given by the formula \[W = \mathop F\limits^ \to .\mathop S\limits^ \to = \left| F \right|\left| S \right|\cos \theta \].
Complete step-by-step answer:
A particle acted on two constant forces \[\mathop {{F_1}}\limits^ \to = 3i + j - k\] and \[\mathop {{F_2}}\limits^ \to = 4i + j - 3k\] .
So, the net force applied on particle is \[\mathop F\limits^ \to = \mathop {{F_1}}\limits^ \to + \mathop {{F_2}}\limits^ \to \]
$
\Rightarrow \mathop F\limits^ \to = \left( {3i + j - k} \right) + \left( {4i + j - 3k} \right) \\
\Rightarrow \mathop F\limits^ \to = 7i + 2j - 4k \\
$
Now, the particle displaced from the point \[\mathop {{r_1}}\limits^ \to = i + 2j + 3k\] to \[\mathop {{r_2}}\limits^ \to = 5i + 4j + k\]
So, the displacement covered by particle \[\mathop S\limits^ \to = \mathop {{r_2}}\limits^ \to - \mathop {{r_1}}\limits^ \to \]
\[
\Rightarrow \mathop S\limits^ \to = \left( {5i + 4j + k} \right) - \left( {i + 2j + 3k} \right) \\
\Rightarrow \mathop S\limits^ \to = 4i + 2j - 2k \\
\]
Now, we apply formula of work done \[W = \mathop F\limits^ \to .\mathop S\limits^ \to \]
$ \Rightarrow W = \left( {7i + 2j - 4k} \right).\left( {4i + 2j - 2k} \right)$
We know in dot product $i.i = 1,j.j = 1,k.k = 1
i.j=0, i.k=0$
$
\Rightarrow W = 28 + 4 + 8 \\
\Rightarrow W = 40J \\
$
So, the total work done by the forces is 40 Joules.
Note: Whenever we face such types of problems we use some important points. First we find the net force acted on the particle and also the displacement covered by the particle then apply the formula of work done. So, after using dot product we will get the required answer.
Complete step-by-step answer:
A particle acted on two constant forces \[\mathop {{F_1}}\limits^ \to = 3i + j - k\] and \[\mathop {{F_2}}\limits^ \to = 4i + j - 3k\] .
So, the net force applied on particle is \[\mathop F\limits^ \to = \mathop {{F_1}}\limits^ \to + \mathop {{F_2}}\limits^ \to \]
$
\Rightarrow \mathop F\limits^ \to = \left( {3i + j - k} \right) + \left( {4i + j - 3k} \right) \\
\Rightarrow \mathop F\limits^ \to = 7i + 2j - 4k \\
$
Now, the particle displaced from the point \[\mathop {{r_1}}\limits^ \to = i + 2j + 3k\] to \[\mathop {{r_2}}\limits^ \to = 5i + 4j + k\]
So, the displacement covered by particle \[\mathop S\limits^ \to = \mathop {{r_2}}\limits^ \to - \mathop {{r_1}}\limits^ \to \]
\[
\Rightarrow \mathop S\limits^ \to = \left( {5i + 4j + k} \right) - \left( {i + 2j + 3k} \right) \\
\Rightarrow \mathop S\limits^ \to = 4i + 2j - 2k \\
\]
Now, we apply formula of work done \[W = \mathop F\limits^ \to .\mathop S\limits^ \to \]
$ \Rightarrow W = \left( {7i + 2j - 4k} \right).\left( {4i + 2j - 2k} \right)$
We know in dot product $i.i = 1,j.j = 1,k.k = 1
i.j=0, i.k=0$
$
\Rightarrow W = 28 + 4 + 8 \\
\Rightarrow W = 40J \\
$
So, the total work done by the forces is 40 Joules.
Note: Whenever we face such types of problems we use some important points. First we find the net force acted on the particle and also the displacement covered by the particle then apply the formula of work done. So, after using dot product we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it