Answer
Verified
410.1k+ views
Hint: The charge of a disconnected capacitor remains the same before and after the dielectric has been placed. The voltage drops during after the dielectric has been placed.
Formula used: In this solution we will be using the following formulae;
\[Q = CV\]where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Complete Step-by-Step solution:
To solve, we note that the charge before and after the dielectric has been placed are the same, since the capacitor was disconnected before it was done.
Generally,
\[Q = CV\] where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
Capacitance is
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
The initial capacitance is
\[{C_0} = \dfrac{{\varepsilon A}}{d}\] (since \[K = 1\] for air)
Hence, charge is,
\[Q = \dfrac{{\varepsilon A}}{d}V\]
The final capacitance
\[C = \dfrac{{K\varepsilon A}}{d}\]
Hence, charge is also
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f}\]
Hence, by equating, we have
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f} = \dfrac{{\varepsilon A}}{d}V\]
Then, by simplification, we have
\[{V_f} = \dfrac{V}{K}\].
Now the potential energy is given as
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
Hence, the initial and final energy are respectively
\[{U_i} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\]
\[{U_f} = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)V_f^2 = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{{{K^2}}} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K}\]
The work done is
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Hence,
\[W = - \left[ {\dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K} - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}} \right]\]
\[ \Rightarrow W = - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\left[ {\dfrac{1}{K} - 1} \right]\]
By rearranging, we have
\[W = \dfrac{{\varepsilon A}}{{2d}}{V^2}\left[ {1 - \dfrac{1}{K}} \right]\]
Hence, the correct option is A
Note: Alternatively, without lengthy calculations and using some reasoning, we can get the answer. We can reason as follows: first work done is a difference between different energy states, hence the answer cannot be C or D, also, energy is \[\dfrac{1}{2}C{V^2}\], hence, the answer cannot be B either. Hence, the answer is A.
Formula used: In this solution we will be using the following formulae;
\[Q = CV\]where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Complete Step-by-Step solution:
To solve, we note that the charge before and after the dielectric has been placed are the same, since the capacitor was disconnected before it was done.
Generally,
\[Q = CV\] where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
Capacitance is
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
The initial capacitance is
\[{C_0} = \dfrac{{\varepsilon A}}{d}\] (since \[K = 1\] for air)
Hence, charge is,
\[Q = \dfrac{{\varepsilon A}}{d}V\]
The final capacitance
\[C = \dfrac{{K\varepsilon A}}{d}\]
Hence, charge is also
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f}\]
Hence, by equating, we have
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f} = \dfrac{{\varepsilon A}}{d}V\]
Then, by simplification, we have
\[{V_f} = \dfrac{V}{K}\].
Now the potential energy is given as
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
Hence, the initial and final energy are respectively
\[{U_i} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\]
\[{U_f} = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)V_f^2 = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{{{K^2}}} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K}\]
The work done is
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Hence,
\[W = - \left[ {\dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K} - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}} \right]\]
\[ \Rightarrow W = - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\left[ {\dfrac{1}{K} - 1} \right]\]
By rearranging, we have
\[W = \dfrac{{\varepsilon A}}{{2d}}{V^2}\left[ {1 - \dfrac{1}{K}} \right]\]
Hence, the correct option is A
Note: Alternatively, without lengthy calculations and using some reasoning, we can get the answer. We can reason as follows: first work done is a difference between different energy states, hence the answer cannot be C or D, also, energy is \[\dfrac{1}{2}C{V^2}\], hence, the answer cannot be B either. Hence, the answer is A.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell