Answer
Verified
495k+ views
Hint:- Use Bernoulli trials to find probability of getting two successes and probability of getting a favourable outcome is the ratio of number of favourable outcomes to the total number of outcomes.
(1)
For getting a doublet dice must be thrown 2 times.
As we know that dice has six numbers.
So, possible number of outcomes is,
S = { (1,1), (1,2), (1,3), ......... (6,4), (6,5), (6,6) }.
So, the total number of outcomes is n(S) = 6x6 = 36.
Let, outcomes with doublet be A.
So, A = { (1,1), (2,2), (3,3), (4,4), (5,5), (6,6) }.
So, the number of outcomes with doublet is n(A) = 6.
As, we know that,
Probability of getting a favourable outcome = \[\dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of outcomes}}}}\]
So, probability of getting doublet P(A) \[ = {\text{ }}\dfrac{{{\text{n(A)}}}}{{{\text{n(S)}}}}\] \[ = {\text{ }}\dfrac{6}{{36}}{\text{ }} = {\text{ }}\dfrac{1}{6}\]
Hence, the probability of getting a doublet will be \[\dfrac{1}{6}\].
(2)
Let, B be the event of not getting successes.
Then, Probability of not getting success = 1 – Probability of getting success.
So, P(B) = 1 – P(A) = 1 – \[\dfrac{1}{6}{\text{ = }}\dfrac{5}{6}\]
Let, n be the number of times dice is thrown and that is 4.
Let X be the number of doublets.
So, throwing a pair of dice is a Bernoulli trial.
So, according to Bernoulli trial formula.
And, X has the binomial distribution.
P(X = x) = \[{}^n{C_x}{q^{n - x}}{p^x}\]
Where,
P(x) = probability of getting x successes.
x = number of successes.
n = number of times dice is thrown = 4
q = probability of not getting doublet = \[\dfrac{5}{6}\]
p = probability of getting doublet = \[\dfrac{1}{6}\]
And we need to find the probability of getting two successes.
So, x = 2
So, now putting the values in the binomial distribution. We will get,
P(x = 2) = \[{}^4{C_2}{\left( {\dfrac{5}{6}} \right)^2}{\left( {\dfrac{1}{6}} \right)^2}\]
P(x = 2) = \[\dfrac{{4!}}{{2!*2!}}{\left( {\dfrac{5}{6}} \right)^2}{\left( {\dfrac{1}{6}} \right)^2}\]
P(x = 2) = \[6*\dfrac{{25}}{{36}}*\dfrac{1}{{36}} = \dfrac{{25}}{{216}}\]
Hence, the probability of getting two successes will be \[\dfrac{{25}}{{216}}\].
Note:- Whenever we come up with this type of problem then first, we will find the probability of getting favourable outcome and then we subtract that from 1, to get probability of not getting favourable outcome. After that we will apply Bernoulli trial to get the required probability.
(1)
For getting a doublet dice must be thrown 2 times.
As we know that dice has six numbers.
So, possible number of outcomes is,
S = { (1,1), (1,2), (1,3), ......... (6,4), (6,5), (6,6) }.
So, the total number of outcomes is n(S) = 6x6 = 36.
Let, outcomes with doublet be A.
So, A = { (1,1), (2,2), (3,3), (4,4), (5,5), (6,6) }.
So, the number of outcomes with doublet is n(A) = 6.
As, we know that,
Probability of getting a favourable outcome = \[\dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of outcomes}}}}\]
So, probability of getting doublet P(A) \[ = {\text{ }}\dfrac{{{\text{n(A)}}}}{{{\text{n(S)}}}}\] \[ = {\text{ }}\dfrac{6}{{36}}{\text{ }} = {\text{ }}\dfrac{1}{6}\]
Hence, the probability of getting a doublet will be \[\dfrac{1}{6}\].
(2)
Let, B be the event of not getting successes.
Then, Probability of not getting success = 1 – Probability of getting success.
So, P(B) = 1 – P(A) = 1 – \[\dfrac{1}{6}{\text{ = }}\dfrac{5}{6}\]
Let, n be the number of times dice is thrown and that is 4.
Let X be the number of doublets.
So, throwing a pair of dice is a Bernoulli trial.
So, according to Bernoulli trial formula.
And, X has the binomial distribution.
P(X = x) = \[{}^n{C_x}{q^{n - x}}{p^x}\]
Where,
P(x) = probability of getting x successes.
x = number of successes.
n = number of times dice is thrown = 4
q = probability of not getting doublet = \[\dfrac{5}{6}\]
p = probability of getting doublet = \[\dfrac{1}{6}\]
And we need to find the probability of getting two successes.
So, x = 2
So, now putting the values in the binomial distribution. We will get,
P(x = 2) = \[{}^4{C_2}{\left( {\dfrac{5}{6}} \right)^2}{\left( {\dfrac{1}{6}} \right)^2}\]
P(x = 2) = \[\dfrac{{4!}}{{2!*2!}}{\left( {\dfrac{5}{6}} \right)^2}{\left( {\dfrac{1}{6}} \right)^2}\]
P(x = 2) = \[6*\dfrac{{25}}{{36}}*\dfrac{1}{{36}} = \dfrac{{25}}{{216}}\]
Hence, the probability of getting two successes will be \[\dfrac{{25}}{{216}}\].
Note:- Whenever we come up with this type of problem then first, we will find the probability of getting favourable outcome and then we subtract that from 1, to get probability of not getting favourable outcome. After that we will apply Bernoulli trial to get the required probability.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE