
A man weight $W$ on the surface of the earth and his weight at a height $R$ from the surface of the earth is ( $R$ is the radius of the earth)
(A)$\dfrac{W}{4}$
(B)$\dfrac{W}{2}$
(C)$W$
(D)$4W$
Answer
232.8k+ views
Hint: The weight of a body is the force acting on that body due to gravitational pull. S.I. unit of weight is newton $(N)$ . The mass of a body always remains constant but the weight of a body changes with the change in gravitational force acting on it.
Formula used:
$W = mg$
$W = \dfrac{{GMm}}{{{D^2}}}$
where $W$ is the gravitational force acting between two bodies, $m$ is mass of one of the body, $M$ is mass of another body, $G$ is the universal gravitational constant, and $D$ is the distance between the center of the two bodies.
Complete Step-by-step solution:
It is given that the weight of the man on the surface of the earth is $W$.
Hence the mass $(m)$ of man will be $\dfrac{W}{g}$.
i.e. $ \Rightarrow m = \dfrac{W}{g}$
where $g$is the acceleration due to gravity near the earth’s surface which is equal to $\dfrac{{GM}}{{{R^2}}}$.
From Newton's law of gravitation,
$W = \dfrac{{GMm}}{{{D^2}}}$
Where $W$ is the gravitational force acting between two bodies, $m$ is the mass of one of the body, $M$ is the mass of another body, $G$is the universal gravitational constant, and $D$ is the distance between the center of the two bodies.
In our solution with regard to the question, it can be written as,
$ \Rightarrow W = \dfrac{{GMm}}{{{R^2}}}$
where $W$is the weight of man at the surface of the earth, $m$ is the mass of man, $M$ is the mass of earth, $G$is the universal gravitational constant, and $R$is the radius of the earth.
Let the weight of man at a height $R$from the surface of the earth i.e. at a distance of $2R$from the center of the earth be ${W_0}$.
So,
$ \Rightarrow {W_0} = \dfrac{{GMm}}{{{{(R + R)}^2}}}$
$ \Rightarrow {W_0} = \dfrac{{GMm}}{{{{(2R)}^2}}} = \dfrac{{GMm}}{{4{R^2}}}$
As we have seen earlier, $W = \dfrac{{GMm}}{{{R^2}}}$.
Hence,
$ \Rightarrow {W_0} = \dfrac{W}{4}$
Therefore the correct answer to our question is (A) $\dfrac{W}{4}$.
Note:
In many questions with an increase in height, we did not consider the weight of the body is changing as the change of weight with small variation in height (in comparison to radius of the earth) will be very small and thus can be neglected. But in this question change in height was not small and was comparable to the radius of the earth thus the change produced can’t be neglected.
Formula used:
$W = mg$
$W = \dfrac{{GMm}}{{{D^2}}}$
where $W$ is the gravitational force acting between two bodies, $m$ is mass of one of the body, $M$ is mass of another body, $G$ is the universal gravitational constant, and $D$ is the distance between the center of the two bodies.
Complete Step-by-step solution:
It is given that the weight of the man on the surface of the earth is $W$.
Hence the mass $(m)$ of man will be $\dfrac{W}{g}$.
i.e. $ \Rightarrow m = \dfrac{W}{g}$
where $g$is the acceleration due to gravity near the earth’s surface which is equal to $\dfrac{{GM}}{{{R^2}}}$.
From Newton's law of gravitation,
$W = \dfrac{{GMm}}{{{D^2}}}$
Where $W$ is the gravitational force acting between two bodies, $m$ is the mass of one of the body, $M$ is the mass of another body, $G$is the universal gravitational constant, and $D$ is the distance between the center of the two bodies.
In our solution with regard to the question, it can be written as,
$ \Rightarrow W = \dfrac{{GMm}}{{{R^2}}}$
where $W$is the weight of man at the surface of the earth, $m$ is the mass of man, $M$ is the mass of earth, $G$is the universal gravitational constant, and $R$is the radius of the earth.
Let the weight of man at a height $R$from the surface of the earth i.e. at a distance of $2R$from the center of the earth be ${W_0}$.
So,
$ \Rightarrow {W_0} = \dfrac{{GMm}}{{{{(R + R)}^2}}}$
$ \Rightarrow {W_0} = \dfrac{{GMm}}{{{{(2R)}^2}}} = \dfrac{{GMm}}{{4{R^2}}}$
As we have seen earlier, $W = \dfrac{{GMm}}{{{R^2}}}$.
Hence,
$ \Rightarrow {W_0} = \dfrac{W}{4}$
Therefore the correct answer to our question is (A) $\dfrac{W}{4}$.
Note:
In many questions with an increase in height, we did not consider the weight of the body is changing as the change of weight with small variation in height (in comparison to radius of the earth) will be very small and thus can be neglected. But in this question change in height was not small and was comparable to the radius of the earth thus the change produced can’t be neglected.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

