
A first-order reaction $({t_{\dfrac{1}{2}}} = 1day)$ completes $x\% $ after 4 half-lives. Value of $x$ is:
A. $87.5$
B. $75$
C. $93.75$
D. $50$
Answer
543.6k+ views
Hint: The half lifetime for 4 half-lives will be equal to 4 times the half-life of 1 half-life i.e. 1 day and substituting ${t_{\dfrac{1}{2}}}^\prime = 4(1day) = 4days$ in integrated rate equation for the first-order reaction, we can find the value of $x$ but first of all, we need to find the value of the rate constant $k$. For a first-order reaction, $k = \dfrac{{2.303}}{t}{\log _{10}}\dfrac{a}{{a - x}}$
Here, $a$ is the initial concentration
$x$ is the amount of reactant reacting in time t
Complete step by step answer:
Now, we know that the half-life formula for the first-order reaction is,
${t_{\dfrac{1}{2}}} = \dfrac{{0.693}}{k}$
Here, $k$ is rate constant
For 1 half-life,
${t_{\dfrac{1}{2}}} = 1day$ (Given)
$\therefore $For 4 half-lives,
${t_{\dfrac{1}{2}}}^\prime = 4\left( {{t_{\dfrac{1}{2}}}} \right)$
$ = 4(1)$
${t_{\dfrac{1}{2}}}^\prime = 4days$ ……. (Equation number 1)
Now,
${t_{\dfrac{1}{2}}} = \dfrac{{0.693}}{k}$
So, $k = \dfrac{{0.693}}{{{t_{\dfrac{1}{2}}}}}$
$ \Rightarrow k = \dfrac{{0.693}}{1}$
$k = 0.693da{y^{ - 1}}$ ….. (Equation number 2)
For $t = {t_{\dfrac{1}{2}}}$,
${t_{\dfrac{1}{2}}} = \dfrac{{2.303}}{k}{\log _{10}}\dfrac{a}{{a - x}}$
And for $t = {t_{\dfrac{1}{2}}}^\prime $,
${t_{\dfrac{1}{2}}}^\prime = \dfrac{{2.303}}{k}{\log _{10}}\dfrac{{100}}{{100 - x}}$ …… (Equation number 3)
As the reaction completes $x\% $ after 4 half-lives. (Given)
But ${t_{\dfrac{1}{2}}}^\prime = 4days$ …..(From Equation number 1)
And $k = 0.693da{y^{ - 1}}$ …..(From Equation number 2)
Substituting these values in Equation number 3,
$4 = \dfrac{{2.303}}{{0.693}}{\log _{10}}\dfrac{{100}}{{100 - x}}$
$ \Rightarrow 4 = 3.3232\left[ {{{\log }_{10}}\left( {100} \right) - {{\log }_{10}}\left( {100 - x} \right)} \right]$
$ \Rightarrow 4 = 3.3232\left[ {2 - {{\log }_{10}}\left( {100 - x} \right)} \right]$
$ \Rightarrow \dfrac{4}{{3.3232}} = 2 - {\log _{10}}\left( {100 - x} \right)$
$ \Rightarrow 1.2036 = 2 - {\log _{10}}\left( {100 - x} \right)$
$ \Rightarrow 1.2036 - 2 = - {\log _{10}}\left( {100 - x} \right)$
$ \Rightarrow - 0.7964 = - {\log _{10}}\left( {100 - x} \right)$
$ \Rightarrow 0.7964 = {\log _{10}}\left( {100 - x} \right)$
Now, converting logarithmic form to exponential form,
${10^{0.7964}} = 100 - x$
Taking log on both the sides,
$\log \left( {{{10}^{0.7964}}} \right) = \log \left( {100 - x} \right)$
$0.7964 = {\log _{10}}\left( {100 - x} \right)$
Now taking antilog on both sides,
$A.L.\left( {0.7964} \right) = A.L.\left[ {{{\log }_{10}}\left( {100 - x} \right)} \right]$
$6.2574 = 100 - x$
$ \Rightarrow 6.2574 - 100 = x$
$ \Rightarrow - 93.75 = - x$
$x = 93.75$
Hence, the value of $x$ is $93.75$
So, the correct answer is Option C.
Additional Information:
The concept of half-life was discovered by Ernest Rutherford in 1907. It relates to the time required by radioactive substances for disintegration or the formation of a new substance. It is also known as the half-life period.
Note: The rate constant of a second-order reaction is $k = \dfrac{1}{{2at}}\log \dfrac{x}{{a - x}}$. The first-order rate constant depends on the concentration of only 1 among the reactants. We could see that the half-life of the first order is independent of the reactant concentration. The unit of the first-order reaction is ${\sec ^{ - 1}}$. The unit of half-life is seconds.
Here, $a$ is the initial concentration
$x$ is the amount of reactant reacting in time t
Complete step by step answer:
Now, we know that the half-life formula for the first-order reaction is,
${t_{\dfrac{1}{2}}} = \dfrac{{0.693}}{k}$
Here, $k$ is rate constant
For 1 half-life,
${t_{\dfrac{1}{2}}} = 1day$ (Given)
$\therefore $For 4 half-lives,
${t_{\dfrac{1}{2}}}^\prime = 4\left( {{t_{\dfrac{1}{2}}}} \right)$
$ = 4(1)$
${t_{\dfrac{1}{2}}}^\prime = 4days$ ……. (Equation number 1)
Now,
${t_{\dfrac{1}{2}}} = \dfrac{{0.693}}{k}$
So, $k = \dfrac{{0.693}}{{{t_{\dfrac{1}{2}}}}}$
$ \Rightarrow k = \dfrac{{0.693}}{1}$
$k = 0.693da{y^{ - 1}}$ ….. (Equation number 2)
For $t = {t_{\dfrac{1}{2}}}$,
${t_{\dfrac{1}{2}}} = \dfrac{{2.303}}{k}{\log _{10}}\dfrac{a}{{a - x}}$
And for $t = {t_{\dfrac{1}{2}}}^\prime $,
${t_{\dfrac{1}{2}}}^\prime = \dfrac{{2.303}}{k}{\log _{10}}\dfrac{{100}}{{100 - x}}$ …… (Equation number 3)
As the reaction completes $x\% $ after 4 half-lives. (Given)
But ${t_{\dfrac{1}{2}}}^\prime = 4days$ …..(From Equation number 1)
And $k = 0.693da{y^{ - 1}}$ …..(From Equation number 2)
Substituting these values in Equation number 3,
$4 = \dfrac{{2.303}}{{0.693}}{\log _{10}}\dfrac{{100}}{{100 - x}}$
$ \Rightarrow 4 = 3.3232\left[ {{{\log }_{10}}\left( {100} \right) - {{\log }_{10}}\left( {100 - x} \right)} \right]$
$ \Rightarrow 4 = 3.3232\left[ {2 - {{\log }_{10}}\left( {100 - x} \right)} \right]$
$ \Rightarrow \dfrac{4}{{3.3232}} = 2 - {\log _{10}}\left( {100 - x} \right)$
$ \Rightarrow 1.2036 = 2 - {\log _{10}}\left( {100 - x} \right)$
$ \Rightarrow 1.2036 - 2 = - {\log _{10}}\left( {100 - x} \right)$
$ \Rightarrow - 0.7964 = - {\log _{10}}\left( {100 - x} \right)$
$ \Rightarrow 0.7964 = {\log _{10}}\left( {100 - x} \right)$
Now, converting logarithmic form to exponential form,
${10^{0.7964}} = 100 - x$
Taking log on both the sides,
$\log \left( {{{10}^{0.7964}}} \right) = \log \left( {100 - x} \right)$
$0.7964 = {\log _{10}}\left( {100 - x} \right)$
Now taking antilog on both sides,
$A.L.\left( {0.7964} \right) = A.L.\left[ {{{\log }_{10}}\left( {100 - x} \right)} \right]$
$6.2574 = 100 - x$
$ \Rightarrow 6.2574 - 100 = x$
$ \Rightarrow - 93.75 = - x$
$x = 93.75$
Hence, the value of $x$ is $93.75$
So, the correct answer is Option C.
Additional Information:
The concept of half-life was discovered by Ernest Rutherford in 1907. It relates to the time required by radioactive substances for disintegration or the formation of a new substance. It is also known as the half-life period.
Note: The rate constant of a second-order reaction is $k = \dfrac{1}{{2at}}\log \dfrac{x}{{a - x}}$. The first-order rate constant depends on the concentration of only 1 among the reactants. We could see that the half-life of the first order is independent of the reactant concentration. The unit of the first-order reaction is ${\sec ^{ - 1}}$. The unit of half-life is seconds.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

