
When a film is illuminated by white light, its upper portion appears dark, Path difference between two reflected beams at the spot must be
A. zero
B. $\lambda /2$
C. $2\lambda /2$
D. $\pi $
Answer
409.2k+ views
Hint:-In order to this question, to calculate the path difference between two reflected beams at the spot, we will first explain the path difference and then go for the actual context of the question.
Complete step by step answer:
Firstly, we will explain the path difference, then only we will go to calculate the Path difference between two reflected beams at the spot. When waves from one source collide with waves from another, two-point source interference occurs. If the source of the waves is circular, the circular wavefronts will collide within the medium, forming a pattern.
The pattern is described by a set of nodes and antinodes that are connected by antinodal lines and nodal lines, which are nearly straight lines. There would be an antinodal line in the exact middle of the pattern and an alternating sequence of nodal and antinodal lines to the left and right of the central antinodal line if the wave sources have equal frequencies.
For the dark band, path difference is:
$x = (2N - 1)\dfrac{\lambda }{2}.......N = 1,2,......$
$\therefore x = \dfrac{\lambda }{2},\dfrac{{3\lambda }}{2},\dfrac{{5\lambda }}{2},.........$
Here, $x$ is the path difference.
Hence, the correct option is B.
Note:Now, we will explain here that why path difference has an importance, so in order to account for light interference and diffraction, the principle of path difference is critical. The direction difference of the photons, or pencils of rays, passing through the systems is used to calculate the distribution of luminous energy in optical systems.
Complete step by step answer:
Firstly, we will explain the path difference, then only we will go to calculate the Path difference between two reflected beams at the spot. When waves from one source collide with waves from another, two-point source interference occurs. If the source of the waves is circular, the circular wavefronts will collide within the medium, forming a pattern.
The pattern is described by a set of nodes and antinodes that are connected by antinodal lines and nodal lines, which are nearly straight lines. There would be an antinodal line in the exact middle of the pattern and an alternating sequence of nodal and antinodal lines to the left and right of the central antinodal line if the wave sources have equal frequencies.
For the dark band, path difference is:
$x = (2N - 1)\dfrac{\lambda }{2}.......N = 1,2,......$
$\therefore x = \dfrac{\lambda }{2},\dfrac{{3\lambda }}{2},\dfrac{{5\lambda }}{2},.........$
Here, $x$ is the path difference.
Hence, the correct option is B.
Note:Now, we will explain here that why path difference has an importance, so in order to account for light interference and diffraction, the principle of path difference is critical. The direction difference of the photons, or pencils of rays, passing through the systems is used to calculate the distribution of luminous energy in optical systems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

What is a transformer Explain the principle construction class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE
