
(A) Derive the formula: \[s=ut+\dfrac{1}{2}a{{t}^{2}}\], where the symbols have usual meaning.
Answer
505.2k+ views
Hint: In ordered to answer the first part of the question we would assume some state of a body to prove the above formula. The 1st equation of motion helps us to derive the above formula.
Complete step-by-step solution:
(A) Let us assume a body has an initial velocity = \[u\],
Uniform acceleration = \[a\],
Time= \[t\],
Final velocity= \[v\],
Distance travelled by the body= \[s\],
Now calculate the average velocity \[\Rightarrow \dfrac{InitialVelocity+FinalVelocity}{2}\]
\[\Rightarrow \dfrac{u+v}{2}\]
And Distance travelled=Average velocity × time
Therefore, \[s\Rightarrow \left( \dfrac{u+v}{2} \right)\times t\]
We know the first equation of motion, \[v=u+at\]
Now we are putting all the above value in equation ,–
\[\begin{align}
& s\Rightarrow \left( \dfrac{u+u+at}{2} \right)\times t \\
& s\Rightarrow \left( \dfrac{2ut+a{{t}^{2}}}{2} \right) \\
& \\
& \\
\end{align}\]
\[s=ut+\dfrac{1}{2}a{{t}^{2}}\] where,
initial velocity = \[u\],
Uniform acceleration = \[a\],
Time= \[t\],
Final velocity= \[v\],
Note: Uniform acceleration remains constant with respect to the time . There are some examples of uniform accelerated motion –i.e. dropping a ball from the top, car going along a straight road, skydiver jumping out of the plane.
Complete step-by-step solution:
(A) Let us assume a body has an initial velocity = \[u\],
Uniform acceleration = \[a\],
Time= \[t\],
Final velocity= \[v\],
Distance travelled by the body= \[s\],
Now calculate the average velocity \[\Rightarrow \dfrac{InitialVelocity+FinalVelocity}{2}\]
\[\Rightarrow \dfrac{u+v}{2}\]
And Distance travelled=Average velocity × time
Therefore, \[s\Rightarrow \left( \dfrac{u+v}{2} \right)\times t\]
We know the first equation of motion, \[v=u+at\]
Now we are putting all the above value in equation ,–
\[\begin{align}
& s\Rightarrow \left( \dfrac{u+u+at}{2} \right)\times t \\
& s\Rightarrow \left( \dfrac{2ut+a{{t}^{2}}}{2} \right) \\
& \\
& \\
\end{align}\]
\[s=ut+\dfrac{1}{2}a{{t}^{2}}\] where,
initial velocity = \[u\],
Uniform acceleration = \[a\],
Time= \[t\],
Final velocity= \[v\],
Note: Uniform acceleration remains constant with respect to the time . There are some examples of uniform accelerated motion –i.e. dropping a ball from the top, car going along a straight road, skydiver jumping out of the plane.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

