A circle $'S'$ is described on the focal chord of the parabola ${{y}^{2}}=4x$ as diameter. If the focal chord is inclined at an angle of $45{}^\circ $ with an axis of $x$ , then
which of the following is/are true?
(A) Radius of the circle is $4.$
(B) Centre of the circle is $\left( 3,2 \right)$
(C) The line $x+1=0$ touches the circle
(D) The circle ${{x}^{2}}+{{y}^{2}}+2x-6y+3=0$ is orthogonal to $'S'$
Last updated date: 19th Mar 2023
•
Total views: 306.9k
•
Views today: 4.86k
Answer
306.9k+ views
Hint: Consider the directrix of the circle touching the parabola as $x+1=0$ and
frame the equation of the circle.
From the figure, it shows the parabola ${{y}^{2}}=4x$
Let $P$ and $Q$ be the extremities of the focal chord.
Where $P$is $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$
$Q$ is $\left( \dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
And it's given in the question that the focal chord $PQ$ is inclined at an angle of $45{}^\circ
$ with $x-axis$.
The directrix of the circle touches the parabola
i.e. directrix of circle $\Rightarrow x+1=0...................\left( 1 \right)$
Now the equation of the circle can be written as from $P$and $Q$
\[\begin{align}
& P\left( \underset{{{X}_{1}}}{\mathop{{{t}_{1}}^{2}}}\,,\underset{{{Y}_{1}}}{\mathop{2{{t}_{1}}}}\,
\right)\text{ and }Q\left( \dfrac{1}{\underset{{{X}_{2}}}{\mathop{{{t}_{1}}^{2}}}\,},-\dfrac{2}{\underset{{{Y}_{2}}}{\mat
hop{{{t}_{2}}}}\,} \right) \\
& \Rightarrow \left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left(
y-{{y}_{2}} \right)=0 \\
& \Rightarrow \left( x-{{t}_{1}}^{2} \right)\left( x-\dfrac{1}{{{t}_{1}}^{2}} \right)+\left( y-2{{t}_{1}} \right)\left( y+\dfrac{2}{{{t}_{1}}} \right)=0 \\
\end{align}\]
Opening the brackets and simplifying it
$\begin{align}
& {{x}^{2}}-\dfrac{x}{{{t}_{1}}^{2}}-x{{t}_{1}}^{2}+1+{{y}^{2}}+\dfrac{2y}{{{t}_{1}}}-2y{{t}_{1}}-4=0
\\
& \Rightarrow {{x}^{2}}-\dfrac{x}{{{t}_{1}}^{2}}-x{{t}_{1}}^{2}+{{y}^{2}}+\dfrac{2y}{{{t}_{1}}}-2y{{t}_{1}}-3=0 \\
& \Rightarrow {{x}^{2}}-\left( {{t}_{1}}^{2}+\dfrac{1}{{{t}_{1}}^{2}} \right)x+{{y}^{2}}-2\left[
{{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right]y-3=0...........\left( 2 \right) \\
\end{align}$
Let’s take the slope of focal chord $PQ=1$
We know the equation of slope $\Rightarrow \dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}=\dfrac{2a}{{{y}_{1}}}$
This is the equation of the chord of the parabola ${{y}^{2}}=4ax$
Here $\left( x,y \right)$ can be taken as $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$
$\left( {{x}_{1}},{{y}_{1}} \right)$ can be taken as $\left(
\dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
$\dfrac{2a}{{{y}_{1}}}=1$ [i.e. slope of focal chord is taken as $1$ ]
i.e. $\tan 45{}^\circ =1$
Substituting the coordinates $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$ and $\left(
\dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
in the equation of slope
$\dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}=1\Rightarrow \dfrac{2{{t}_{1}}\left( \dfrac{-2}{{{t}_{1}}}
\right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1\Rightarrow \dfrac{2\left(
{{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1$
We know the equation ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
\[\begin{align}
& \dfrac{2\left( {{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1
\\
& \Rightarrow \dfrac{2\left( {{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}{\left(
{{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right)\left( {{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}=1 \\
\end{align}\]
By cancelling the like terms we get
$\dfrac{2}{{{t}_{1}}-\dfrac{1}{{{t}_{1}}}}=1$
$\therefore $ By cross multiplying we get
${{t}_{1}}-\dfrac{1}{{{t}_{1}}}=2$
Multiplying throughout by ${{t}_{1}}$
${{t}_{1}}^{2}-1-2{{t}_{1}}=0\Rightarrow {{t}_{1}}^{2}-2{{t}_{1}}-1=0..............\left( 3 \right)$
By solving the equation using quadratic equation which is of form
$a{{x}^{2}}+bx+c=0$
Comparing the general equation with equation $\left( 3 \right)$
$a=1,b=-2\text{ and }c=-1$
Substituting them in the quadratic formula$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
$\begin{align}
& \dfrac{\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times 1\times \left( -1
\right)}}{2\times 1}=\dfrac{2\pm \sqrt{4+4}}{2}=\dfrac{2\pm \sqrt{8}}{2} \\
& =\dfrac{2\pm 2\sqrt{2}}{2}=1\pm \sqrt{2} \\
\end{align}$
i.e. we get the roots as $\left( 1+\sqrt{2} \right)$ and $\left( 1-\sqrt{\sqrt{2}} \right)$
We neglect $\left( 1+\sqrt{2} \right)$as the root of the solution
$\therefore {{t}_{1}}=1+\sqrt{2}$
By substituting the value of ${{t}_{1}}=1+\sqrt{2}$ to find the radius of the circle, we get a
rather big equation which does not fit to the option provided in the question.
$\therefore $ The only correct option is $\left( c \right)$ the line $x+1=0$ touches the circle.
Correct option is C.
Note: (i) Here the parametric coordinates of the parabola $P$ is $\left( a{{t}^{2}},2at \right)$
Here $a=1$ $\therefore $ the coordinates of $P$are $\left( {{t}^{2}},2t \right),a>0$
(ii) A common mistake that can happen here is taking ${{t}^{2}}-2{{t}_{1}}+1=0$ instead of
${{t}^{2}}-2{{t}_{1}}-1=0$
Because of this we get the value of ${{t}_{1}}=1$
And thus the radius will be 4 .
Because of this you might mistakenly choose option A instead of option C .
frame the equation of the circle.

From the figure, it shows the parabola ${{y}^{2}}=4x$
Let $P$ and $Q$ be the extremities of the focal chord.
Where $P$is $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$
$Q$ is $\left( \dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
And it's given in the question that the focal chord $PQ$ is inclined at an angle of $45{}^\circ
$ with $x-axis$.
The directrix of the circle touches the parabola
i.e. directrix of circle $\Rightarrow x+1=0...................\left( 1 \right)$
Now the equation of the circle can be written as from $P$and $Q$
\[\begin{align}
& P\left( \underset{{{X}_{1}}}{\mathop{{{t}_{1}}^{2}}}\,,\underset{{{Y}_{1}}}{\mathop{2{{t}_{1}}}}\,
\right)\text{ and }Q\left( \dfrac{1}{\underset{{{X}_{2}}}{\mathop{{{t}_{1}}^{2}}}\,},-\dfrac{2}{\underset{{{Y}_{2}}}{\mat
hop{{{t}_{2}}}}\,} \right) \\
& \Rightarrow \left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left(
y-{{y}_{2}} \right)=0 \\
& \Rightarrow \left( x-{{t}_{1}}^{2} \right)\left( x-\dfrac{1}{{{t}_{1}}^{2}} \right)+\left( y-2{{t}_{1}} \right)\left( y+\dfrac{2}{{{t}_{1}}} \right)=0 \\
\end{align}\]
Opening the brackets and simplifying it
$\begin{align}
& {{x}^{2}}-\dfrac{x}{{{t}_{1}}^{2}}-x{{t}_{1}}^{2}+1+{{y}^{2}}+\dfrac{2y}{{{t}_{1}}}-2y{{t}_{1}}-4=0
\\
& \Rightarrow {{x}^{2}}-\dfrac{x}{{{t}_{1}}^{2}}-x{{t}_{1}}^{2}+{{y}^{2}}+\dfrac{2y}{{{t}_{1}}}-2y{{t}_{1}}-3=0 \\
& \Rightarrow {{x}^{2}}-\left( {{t}_{1}}^{2}+\dfrac{1}{{{t}_{1}}^{2}} \right)x+{{y}^{2}}-2\left[
{{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right]y-3=0...........\left( 2 \right) \\
\end{align}$
Let’s take the slope of focal chord $PQ=1$
We know the equation of slope $\Rightarrow \dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}=\dfrac{2a}{{{y}_{1}}}$
This is the equation of the chord of the parabola ${{y}^{2}}=4ax$
Here $\left( x,y \right)$ can be taken as $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$
$\left( {{x}_{1}},{{y}_{1}} \right)$ can be taken as $\left(
\dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
$\dfrac{2a}{{{y}_{1}}}=1$ [i.e. slope of focal chord is taken as $1$ ]
i.e. $\tan 45{}^\circ =1$
Substituting the coordinates $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$ and $\left(
\dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
in the equation of slope
$\dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}=1\Rightarrow \dfrac{2{{t}_{1}}\left( \dfrac{-2}{{{t}_{1}}}
\right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1\Rightarrow \dfrac{2\left(
{{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1$
We know the equation ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
\[\begin{align}
& \dfrac{2\left( {{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1
\\
& \Rightarrow \dfrac{2\left( {{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}{\left(
{{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right)\left( {{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}=1 \\
\end{align}\]
By cancelling the like terms we get
$\dfrac{2}{{{t}_{1}}-\dfrac{1}{{{t}_{1}}}}=1$
$\therefore $ By cross multiplying we get
${{t}_{1}}-\dfrac{1}{{{t}_{1}}}=2$
Multiplying throughout by ${{t}_{1}}$
${{t}_{1}}^{2}-1-2{{t}_{1}}=0\Rightarrow {{t}_{1}}^{2}-2{{t}_{1}}-1=0..............\left( 3 \right)$
By solving the equation using quadratic equation which is of form
$a{{x}^{2}}+bx+c=0$
Comparing the general equation with equation $\left( 3 \right)$
$a=1,b=-2\text{ and }c=-1$
Substituting them in the quadratic formula$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
$\begin{align}
& \dfrac{\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times 1\times \left( -1
\right)}}{2\times 1}=\dfrac{2\pm \sqrt{4+4}}{2}=\dfrac{2\pm \sqrt{8}}{2} \\
& =\dfrac{2\pm 2\sqrt{2}}{2}=1\pm \sqrt{2} \\
\end{align}$
i.e. we get the roots as $\left( 1+\sqrt{2} \right)$ and $\left( 1-\sqrt{\sqrt{2}} \right)$
We neglect $\left( 1+\sqrt{2} \right)$as the root of the solution
$\therefore {{t}_{1}}=1+\sqrt{2}$
By substituting the value of ${{t}_{1}}=1+\sqrt{2}$ to find the radius of the circle, we get a
rather big equation which does not fit to the option provided in the question.
$\therefore $ The only correct option is $\left( c \right)$ the line $x+1=0$ touches the circle.
Correct option is C.
Note: (i) Here the parametric coordinates of the parabola $P$ is $\left( a{{t}^{2}},2at \right)$
Here $a=1$ $\therefore $ the coordinates of $P$are $\left( {{t}^{2}},2t \right),a>0$
(ii) A common mistake that can happen here is taking ${{t}^{2}}-2{{t}_{1}}+1=0$ instead of
${{t}^{2}}-2{{t}_{1}}-1=0$
Because of this we get the value of ${{t}_{1}}=1$
And thus the radius will be 4 .
Because of this you might mistakenly choose option A instead of option C .
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
