
A circle $'S'$ is described on the focal chord of the parabola ${{y}^{2}}=4x$ as diameter. If the focal chord is inclined at an angle of $45{}^\circ $ with an axis of $x$ , then
which of the following is/are true?
(A) Radius of the circle is $4.$
(B) Centre of the circle is $\left( 3,2 \right)$
(C) The line $x+1=0$ touches the circle
(D) The circle ${{x}^{2}}+{{y}^{2}}+2x-6y+3=0$ is orthogonal to $'S'$
Answer
610.5k+ views
Hint: Consider the directrix of the circle touching the parabola as $x+1=0$ and
frame the equation of the circle.
From the figure, it shows the parabola ${{y}^{2}}=4x$
Let $P$ and $Q$ be the extremities of the focal chord.
Where $P$is $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$
$Q$ is $\left( \dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
And it's given in the question that the focal chord $PQ$ is inclined at an angle of $45{}^\circ
$ with $x-axis$.
The directrix of the circle touches the parabola
i.e. directrix of circle $\Rightarrow x+1=0...................\left( 1 \right)$
Now the equation of the circle can be written as from $P$and $Q$
\[\begin{align}
& P\left( \underset{{{X}_{1}}}{\mathop{{{t}_{1}}^{2}}}\,,\underset{{{Y}_{1}}}{\mathop{2{{t}_{1}}}}\,
\right)\text{ and }Q\left( \dfrac{1}{\underset{{{X}_{2}}}{\mathop{{{t}_{1}}^{2}}}\,},-\dfrac{2}{\underset{{{Y}_{2}}}{\mat
hop{{{t}_{2}}}}\,} \right) \\
& \Rightarrow \left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left(
y-{{y}_{2}} \right)=0 \\
& \Rightarrow \left( x-{{t}_{1}}^{2} \right)\left( x-\dfrac{1}{{{t}_{1}}^{2}} \right)+\left( y-2{{t}_{1}} \right)\left( y+\dfrac{2}{{{t}_{1}}} \right)=0 \\
\end{align}\]
Opening the brackets and simplifying it
$\begin{align}
& {{x}^{2}}-\dfrac{x}{{{t}_{1}}^{2}}-x{{t}_{1}}^{2}+1+{{y}^{2}}+\dfrac{2y}{{{t}_{1}}}-2y{{t}_{1}}-4=0
\\
& \Rightarrow {{x}^{2}}-\dfrac{x}{{{t}_{1}}^{2}}-x{{t}_{1}}^{2}+{{y}^{2}}+\dfrac{2y}{{{t}_{1}}}-2y{{t}_{1}}-3=0 \\
& \Rightarrow {{x}^{2}}-\left( {{t}_{1}}^{2}+\dfrac{1}{{{t}_{1}}^{2}} \right)x+{{y}^{2}}-2\left[
{{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right]y-3=0...........\left( 2 \right) \\
\end{align}$
Let’s take the slope of focal chord $PQ=1$
We know the equation of slope $\Rightarrow \dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}=\dfrac{2a}{{{y}_{1}}}$
This is the equation of the chord of the parabola ${{y}^{2}}=4ax$
Here $\left( x,y \right)$ can be taken as $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$
$\left( {{x}_{1}},{{y}_{1}} \right)$ can be taken as $\left(
\dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
$\dfrac{2a}{{{y}_{1}}}=1$ [i.e. slope of focal chord is taken as $1$ ]
i.e. $\tan 45{}^\circ =1$
Substituting the coordinates $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$ and $\left(
\dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
in the equation of slope
$\dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}=1\Rightarrow \dfrac{2{{t}_{1}}\left( \dfrac{-2}{{{t}_{1}}}
\right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1\Rightarrow \dfrac{2\left(
{{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1$
We know the equation ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
\[\begin{align}
& \dfrac{2\left( {{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1
\\
& \Rightarrow \dfrac{2\left( {{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}{\left(
{{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right)\left( {{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}=1 \\
\end{align}\]
By cancelling the like terms we get
$\dfrac{2}{{{t}_{1}}-\dfrac{1}{{{t}_{1}}}}=1$
$\therefore $ By cross multiplying we get
${{t}_{1}}-\dfrac{1}{{{t}_{1}}}=2$
Multiplying throughout by ${{t}_{1}}$
${{t}_{1}}^{2}-1-2{{t}_{1}}=0\Rightarrow {{t}_{1}}^{2}-2{{t}_{1}}-1=0..............\left( 3 \right)$
By solving the equation using quadratic equation which is of form
$a{{x}^{2}}+bx+c=0$
Comparing the general equation with equation $\left( 3 \right)$
$a=1,b=-2\text{ and }c=-1$
Substituting them in the quadratic formula$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
$\begin{align}
& \dfrac{\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times 1\times \left( -1
\right)}}{2\times 1}=\dfrac{2\pm \sqrt{4+4}}{2}=\dfrac{2\pm \sqrt{8}}{2} \\
& =\dfrac{2\pm 2\sqrt{2}}{2}=1\pm \sqrt{2} \\
\end{align}$
i.e. we get the roots as $\left( 1+\sqrt{2} \right)$ and $\left( 1-\sqrt{\sqrt{2}} \right)$
We neglect $\left( 1+\sqrt{2} \right)$as the root of the solution
$\therefore {{t}_{1}}=1+\sqrt{2}$
By substituting the value of ${{t}_{1}}=1+\sqrt{2}$ to find the radius of the circle, we get a
rather big equation which does not fit to the option provided in the question.
$\therefore $ The only correct option is $\left( c \right)$ the line $x+1=0$ touches the circle.
Correct option is C.
Note: (i) Here the parametric coordinates of the parabola $P$ is $\left( a{{t}^{2}},2at \right)$
Here $a=1$ $\therefore $ the coordinates of $P$are $\left( {{t}^{2}},2t \right),a>0$
(ii) A common mistake that can happen here is taking ${{t}^{2}}-2{{t}_{1}}+1=0$ instead of
${{t}^{2}}-2{{t}_{1}}-1=0$
Because of this we get the value of ${{t}_{1}}=1$
And thus the radius will be 4 .
Because of this you might mistakenly choose option A instead of option C .
frame the equation of the circle.
From the figure, it shows the parabola ${{y}^{2}}=4x$
Let $P$ and $Q$ be the extremities of the focal chord.
Where $P$is $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$
$Q$ is $\left( \dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
And it's given in the question that the focal chord $PQ$ is inclined at an angle of $45{}^\circ
$ with $x-axis$.
The directrix of the circle touches the parabola
i.e. directrix of circle $\Rightarrow x+1=0...................\left( 1 \right)$
Now the equation of the circle can be written as from $P$and $Q$
\[\begin{align}
& P\left( \underset{{{X}_{1}}}{\mathop{{{t}_{1}}^{2}}}\,,\underset{{{Y}_{1}}}{\mathop{2{{t}_{1}}}}\,
\right)\text{ and }Q\left( \dfrac{1}{\underset{{{X}_{2}}}{\mathop{{{t}_{1}}^{2}}}\,},-\dfrac{2}{\underset{{{Y}_{2}}}{\mat
hop{{{t}_{2}}}}\,} \right) \\
& \Rightarrow \left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left(
y-{{y}_{2}} \right)=0 \\
& \Rightarrow \left( x-{{t}_{1}}^{2} \right)\left( x-\dfrac{1}{{{t}_{1}}^{2}} \right)+\left( y-2{{t}_{1}} \right)\left( y+\dfrac{2}{{{t}_{1}}} \right)=0 \\
\end{align}\]
Opening the brackets and simplifying it
$\begin{align}
& {{x}^{2}}-\dfrac{x}{{{t}_{1}}^{2}}-x{{t}_{1}}^{2}+1+{{y}^{2}}+\dfrac{2y}{{{t}_{1}}}-2y{{t}_{1}}-4=0
\\
& \Rightarrow {{x}^{2}}-\dfrac{x}{{{t}_{1}}^{2}}-x{{t}_{1}}^{2}+{{y}^{2}}+\dfrac{2y}{{{t}_{1}}}-2y{{t}_{1}}-3=0 \\
& \Rightarrow {{x}^{2}}-\left( {{t}_{1}}^{2}+\dfrac{1}{{{t}_{1}}^{2}} \right)x+{{y}^{2}}-2\left[
{{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right]y-3=0...........\left( 2 \right) \\
\end{align}$
Let’s take the slope of focal chord $PQ=1$
We know the equation of slope $\Rightarrow \dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}=\dfrac{2a}{{{y}_{1}}}$
This is the equation of the chord of the parabola ${{y}^{2}}=4ax$
Here $\left( x,y \right)$ can be taken as $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$
$\left( {{x}_{1}},{{y}_{1}} \right)$ can be taken as $\left(
\dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
$\dfrac{2a}{{{y}_{1}}}=1$ [i.e. slope of focal chord is taken as $1$ ]
i.e. $\tan 45{}^\circ =1$
Substituting the coordinates $\left( {{t}_{1}}^{2},2{{t}_{1}} \right)$ and $\left(
\dfrac{1}{{{t}_{1}}^{2}},\dfrac{-2}{{{t}_{1}}} \right)$
in the equation of slope
$\dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}=1\Rightarrow \dfrac{2{{t}_{1}}\left( \dfrac{-2}{{{t}_{1}}}
\right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1\Rightarrow \dfrac{2\left(
{{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1$
We know the equation ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
\[\begin{align}
& \dfrac{2\left( {{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right)}{{{t}_{1}}^{2}-\dfrac{1}{{{t}_{1}}^{2}}}=1
\\
& \Rightarrow \dfrac{2\left( {{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}{\left(
{{t}_{1}}-\dfrac{1}{{{t}_{1}}} \right)\left( {{t}_{1}}+\dfrac{1}{{{t}_{1}}} \right)}=1 \\
\end{align}\]
By cancelling the like terms we get
$\dfrac{2}{{{t}_{1}}-\dfrac{1}{{{t}_{1}}}}=1$
$\therefore $ By cross multiplying we get
${{t}_{1}}-\dfrac{1}{{{t}_{1}}}=2$
Multiplying throughout by ${{t}_{1}}$
${{t}_{1}}^{2}-1-2{{t}_{1}}=0\Rightarrow {{t}_{1}}^{2}-2{{t}_{1}}-1=0..............\left( 3 \right)$
By solving the equation using quadratic equation which is of form
$a{{x}^{2}}+bx+c=0$
Comparing the general equation with equation $\left( 3 \right)$
$a=1,b=-2\text{ and }c=-1$
Substituting them in the quadratic formula$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
$\begin{align}
& \dfrac{\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\times 1\times \left( -1
\right)}}{2\times 1}=\dfrac{2\pm \sqrt{4+4}}{2}=\dfrac{2\pm \sqrt{8}}{2} \\
& =\dfrac{2\pm 2\sqrt{2}}{2}=1\pm \sqrt{2} \\
\end{align}$
i.e. we get the roots as $\left( 1+\sqrt{2} \right)$ and $\left( 1-\sqrt{\sqrt{2}} \right)$
We neglect $\left( 1+\sqrt{2} \right)$as the root of the solution
$\therefore {{t}_{1}}=1+\sqrt{2}$
By substituting the value of ${{t}_{1}}=1+\sqrt{2}$ to find the radius of the circle, we get a
rather big equation which does not fit to the option provided in the question.
$\therefore $ The only correct option is $\left( c \right)$ the line $x+1=0$ touches the circle.
Correct option is C.
Note: (i) Here the parametric coordinates of the parabola $P$ is $\left( a{{t}^{2}},2at \right)$
Here $a=1$ $\therefore $ the coordinates of $P$are $\left( {{t}^{2}},2t \right),a>0$
(ii) A common mistake that can happen here is taking ${{t}^{2}}-2{{t}_{1}}+1=0$ instead of
${{t}^{2}}-2{{t}_{1}}-1=0$
Because of this we get the value of ${{t}_{1}}=1$
And thus the radius will be 4 .
Because of this you might mistakenly choose option A instead of option C .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Which prominent US inventor was known as the Wizard class 12 social science CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

What is virtual and erect image ?

Explain the energy losses in the transformer How are class 12 physics CBSE

