
A charge \[q = 10\,{\text{mC}}\] is distributed uniformly over the circumference of a ring of radius \[3\,{\text{m}}\] placed on x-y plane with its centre at origin. Find the electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\]
A. \[18\,{\text{V}}\]
B. \[1.8 \times {10^2}\,{\text{V}}\]
C. \[1.8 \times {10^3}\,{\text{V}}\]
D. \[1.8 \times {10^7}\,{\text{V}}\]
Answer
570k+ views
Hint: First of all, we will find the shortest distance between the point and the charge. Then we will apply the formula and substitute the required values and manipulate accordingly to find the electric potential.
Complete step by step answer:In the given question, we are supplied with the following data:
The charge present which is uniformly distributed over the circumference of a ring is \[10\,{\text{mC}}\] .
The radius of the ring is \[3\,{\text{m}}\] .
We are asked to find the electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] .
To proceed the numerical, we will convert the unit of charge to S.I units:
We know,
\[1\,{\text{mC}} = 1 \times {10^{ - 3}}\,{\text{C}}\]
So, we have:
\[10\,{\text{mC}} = 10 \times {10^{ - 3}}\,{\text{C}}\]
Now, we need to find the electric potential due to the given charge, at a point which is at a distance of \[3\,{\text{m}}\] from the charge.
So, we calculate the shortest distance between them by using the Pythagoras theorem, as given below:
\[
r = \sqrt {{3^2} + {4^2}} \\
r = \sqrt {9 + 16} \\
r = \sqrt {25} \\
r = 5\,{\text{m}} \\
\]
Therefore, the shortest distance has come out to be \[5\,{\text{m}}\] .
Now, to find the electric potential we apply the formula, as given below:
\[V = \dfrac{{Kq}}{r}\] …… (1)
Where,
\[V\] indicates electric potential at a point.
\[K\] indicates Coulomb’s constant.
\[q\] indicates point charge.
\[r\] indicates the shortest distance between the circumference and the given point.
Substituting the required values in the equation (1), we get:
\[
V = \dfrac{{Kq}}{r} \\
V = \dfrac{{9 \times {{10}^9} \times 10 \times {{10}^{ - 3}}}}{5} \\
V = \dfrac{{90 \times {{10}^6}}}{5} \\
V = 1.8 \times {10^7}\,{\text{V}} \\
\]
Hence, electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] is \[1.8 \times {10^7}\,{\text{V}}\] .
The correct option is D.
Additional information:
An electrical potential is the amount of effort required to transfer a unit of electrical charge from a reference point to a particular point in an electrical field without generating an acceleration (also called the electrical field potential, potential decrease, or electrostatic potential).
Note:While solving the numerical, many students tend to make mistake by taking the distance as \[3\,{\text{m}}\] into account, however it is \[5\,{\text{m}}\] , as it is located in space. So, we need to find the shortest distance between the point charge and the point mentioned in the question.
Complete step by step answer:In the given question, we are supplied with the following data:
The charge present which is uniformly distributed over the circumference of a ring is \[10\,{\text{mC}}\] .
The radius of the ring is \[3\,{\text{m}}\] .
We are asked to find the electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] .
To proceed the numerical, we will convert the unit of charge to S.I units:
We know,
\[1\,{\text{mC}} = 1 \times {10^{ - 3}}\,{\text{C}}\]
So, we have:
\[10\,{\text{mC}} = 10 \times {10^{ - 3}}\,{\text{C}}\]
Now, we need to find the electric potential due to the given charge, at a point which is at a distance of \[3\,{\text{m}}\] from the charge.
So, we calculate the shortest distance between them by using the Pythagoras theorem, as given below:
\[
r = \sqrt {{3^2} + {4^2}} \\
r = \sqrt {9 + 16} \\
r = \sqrt {25} \\
r = 5\,{\text{m}} \\
\]
Therefore, the shortest distance has come out to be \[5\,{\text{m}}\] .
Now, to find the electric potential we apply the formula, as given below:
\[V = \dfrac{{Kq}}{r}\] …… (1)
Where,
\[V\] indicates electric potential at a point.
\[K\] indicates Coulomb’s constant.
\[q\] indicates point charge.
\[r\] indicates the shortest distance between the circumference and the given point.
Substituting the required values in the equation (1), we get:
\[
V = \dfrac{{Kq}}{r} \\
V = \dfrac{{9 \times {{10}^9} \times 10 \times {{10}^{ - 3}}}}{5} \\
V = \dfrac{{90 \times {{10}^6}}}{5} \\
V = 1.8 \times {10^7}\,{\text{V}} \\
\]
Hence, electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] is \[1.8 \times {10^7}\,{\text{V}}\] .
The correct option is D.
Additional information:
An electrical potential is the amount of effort required to transfer a unit of electrical charge from a reference point to a particular point in an electrical field without generating an acceleration (also called the electrical field potential, potential decrease, or electrostatic potential).
Note:While solving the numerical, many students tend to make mistake by taking the distance as \[3\,{\text{m}}\] into account, however it is \[5\,{\text{m}}\] , as it is located in space. So, we need to find the shortest distance between the point charge and the point mentioned in the question.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

