Answer
Verified
454.2k+ views
Hint: First of all, we will find the shortest distance between the point and the charge. Then we will apply the formula and substitute the required values and manipulate accordingly to find the electric potential.
Complete step by step answer:In the given question, we are supplied with the following data:
The charge present which is uniformly distributed over the circumference of a ring is \[10\,{\text{mC}}\] .
The radius of the ring is \[3\,{\text{m}}\] .
We are asked to find the electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] .
To proceed the numerical, we will convert the unit of charge to S.I units:
We know,
\[1\,{\text{mC}} = 1 \times {10^{ - 3}}\,{\text{C}}\]
So, we have:
\[10\,{\text{mC}} = 10 \times {10^{ - 3}}\,{\text{C}}\]
Now, we need to find the electric potential due to the given charge, at a point which is at a distance of \[3\,{\text{m}}\] from the charge.
So, we calculate the shortest distance between them by using the Pythagoras theorem, as given below:
\[
r = \sqrt {{3^2} + {4^2}} \\
r = \sqrt {9 + 16} \\
r = \sqrt {25} \\
r = 5\,{\text{m}} \\
\]
Therefore, the shortest distance has come out to be \[5\,{\text{m}}\] .
Now, to find the electric potential we apply the formula, as given below:
\[V = \dfrac{{Kq}}{r}\] …… (1)
Where,
\[V\] indicates electric potential at a point.
\[K\] indicates Coulomb’s constant.
\[q\] indicates point charge.
\[r\] indicates the shortest distance between the circumference and the given point.
Substituting the required values in the equation (1), we get:
\[
V = \dfrac{{Kq}}{r} \\
V = \dfrac{{9 \times {{10}^9} \times 10 \times {{10}^{ - 3}}}}{5} \\
V = \dfrac{{90 \times {{10}^6}}}{5} \\
V = 1.8 \times {10^7}\,{\text{V}} \\
\]
Hence, electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] is \[1.8 \times {10^7}\,{\text{V}}\] .
The correct option is D.
Additional information:
An electrical potential is the amount of effort required to transfer a unit of electrical charge from a reference point to a particular point in an electrical field without generating an acceleration (also called the electrical field potential, potential decrease, or electrostatic potential).
Note:While solving the numerical, many students tend to make mistake by taking the distance as \[3\,{\text{m}}\] into account, however it is \[5\,{\text{m}}\] , as it is located in space. So, we need to find the shortest distance between the point charge and the point mentioned in the question.
Complete step by step answer:In the given question, we are supplied with the following data:
The charge present which is uniformly distributed over the circumference of a ring is \[10\,{\text{mC}}\] .
The radius of the ring is \[3\,{\text{m}}\] .
We are asked to find the electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] .
To proceed the numerical, we will convert the unit of charge to S.I units:
We know,
\[1\,{\text{mC}} = 1 \times {10^{ - 3}}\,{\text{C}}\]
So, we have:
\[10\,{\text{mC}} = 10 \times {10^{ - 3}}\,{\text{C}}\]
Now, we need to find the electric potential due to the given charge, at a point which is at a distance of \[3\,{\text{m}}\] from the charge.
So, we calculate the shortest distance between them by using the Pythagoras theorem, as given below:
\[
r = \sqrt {{3^2} + {4^2}} \\
r = \sqrt {9 + 16} \\
r = \sqrt {25} \\
r = 5\,{\text{m}} \\
\]
Therefore, the shortest distance has come out to be \[5\,{\text{m}}\] .
Now, to find the electric potential we apply the formula, as given below:
\[V = \dfrac{{Kq}}{r}\] …… (1)
Where,
\[V\] indicates electric potential at a point.
\[K\] indicates Coulomb’s constant.
\[q\] indicates point charge.
\[r\] indicates the shortest distance between the circumference and the given point.
Substituting the required values in the equation (1), we get:
\[
V = \dfrac{{Kq}}{r} \\
V = \dfrac{{9 \times {{10}^9} \times 10 \times {{10}^{ - 3}}}}{5} \\
V = \dfrac{{90 \times {{10}^6}}}{5} \\
V = 1.8 \times {10^7}\,{\text{V}} \\
\]
Hence, electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] is \[1.8 \times {10^7}\,{\text{V}}\] .
The correct option is D.
Additional information:
An electrical potential is the amount of effort required to transfer a unit of electrical charge from a reference point to a particular point in an electrical field without generating an acceleration (also called the electrical field potential, potential decrease, or electrostatic potential).
Note:While solving the numerical, many students tend to make mistake by taking the distance as \[3\,{\text{m}}\] into account, however it is \[5\,{\text{m}}\] , as it is located in space. So, we need to find the shortest distance between the point charge and the point mentioned in the question.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE