
A charge \[q = 10\,{\text{mC}}\] is distributed uniformly over the circumference of a ring of radius \[3\,{\text{m}}\] placed on x-y plane with its centre at origin. Find the electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\]
A. \[18\,{\text{V}}\]
B. \[1.8 \times {10^2}\,{\text{V}}\]
C. \[1.8 \times {10^3}\,{\text{V}}\]
D. \[1.8 \times {10^7}\,{\text{V}}\]
Answer
569.1k+ views
Hint: First of all, we will find the shortest distance between the point and the charge. Then we will apply the formula and substitute the required values and manipulate accordingly to find the electric potential.
Complete step by step answer:In the given question, we are supplied with the following data:
The charge present which is uniformly distributed over the circumference of a ring is \[10\,{\text{mC}}\] .
The radius of the ring is \[3\,{\text{m}}\] .
We are asked to find the electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] .
To proceed the numerical, we will convert the unit of charge to S.I units:
We know,
\[1\,{\text{mC}} = 1 \times {10^{ - 3}}\,{\text{C}}\]
So, we have:
\[10\,{\text{mC}} = 10 \times {10^{ - 3}}\,{\text{C}}\]
Now, we need to find the electric potential due to the given charge, at a point which is at a distance of \[3\,{\text{m}}\] from the charge.
So, we calculate the shortest distance between them by using the Pythagoras theorem, as given below:
\[
r = \sqrt {{3^2} + {4^2}} \\
r = \sqrt {9 + 16} \\
r = \sqrt {25} \\
r = 5\,{\text{m}} \\
\]
Therefore, the shortest distance has come out to be \[5\,{\text{m}}\] .
Now, to find the electric potential we apply the formula, as given below:
\[V = \dfrac{{Kq}}{r}\] …… (1)
Where,
\[V\] indicates electric potential at a point.
\[K\] indicates Coulomb’s constant.
\[q\] indicates point charge.
\[r\] indicates the shortest distance between the circumference and the given point.
Substituting the required values in the equation (1), we get:
\[
V = \dfrac{{Kq}}{r} \\
V = \dfrac{{9 \times {{10}^9} \times 10 \times {{10}^{ - 3}}}}{5} \\
V = \dfrac{{90 \times {{10}^6}}}{5} \\
V = 1.8 \times {10^7}\,{\text{V}} \\
\]
Hence, electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] is \[1.8 \times {10^7}\,{\text{V}}\] .
The correct option is D.
Additional information:
An electrical potential is the amount of effort required to transfer a unit of electrical charge from a reference point to a particular point in an electrical field without generating an acceleration (also called the electrical field potential, potential decrease, or electrostatic potential).
Note:While solving the numerical, many students tend to make mistake by taking the distance as \[3\,{\text{m}}\] into account, however it is \[5\,{\text{m}}\] , as it is located in space. So, we need to find the shortest distance between the point charge and the point mentioned in the question.
Complete step by step answer:In the given question, we are supplied with the following data:
The charge present which is uniformly distributed over the circumference of a ring is \[10\,{\text{mC}}\] .
The radius of the ring is \[3\,{\text{m}}\] .
We are asked to find the electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] .
To proceed the numerical, we will convert the unit of charge to S.I units:
We know,
\[1\,{\text{mC}} = 1 \times {10^{ - 3}}\,{\text{C}}\]
So, we have:
\[10\,{\text{mC}} = 10 \times {10^{ - 3}}\,{\text{C}}\]
Now, we need to find the electric potential due to the given charge, at a point which is at a distance of \[3\,{\text{m}}\] from the charge.
So, we calculate the shortest distance between them by using the Pythagoras theorem, as given below:
\[
r = \sqrt {{3^2} + {4^2}} \\
r = \sqrt {9 + 16} \\
r = \sqrt {25} \\
r = 5\,{\text{m}} \\
\]
Therefore, the shortest distance has come out to be \[5\,{\text{m}}\] .
Now, to find the electric potential we apply the formula, as given below:
\[V = \dfrac{{Kq}}{r}\] …… (1)
Where,
\[V\] indicates electric potential at a point.
\[K\] indicates Coulomb’s constant.
\[q\] indicates point charge.
\[r\] indicates the shortest distance between the circumference and the given point.
Substituting the required values in the equation (1), we get:
\[
V = \dfrac{{Kq}}{r} \\
V = \dfrac{{9 \times {{10}^9} \times 10 \times {{10}^{ - 3}}}}{5} \\
V = \dfrac{{90 \times {{10}^6}}}{5} \\
V = 1.8 \times {10^7}\,{\text{V}} \\
\]
Hence, electric potential at a point \[P\left( {0,0,4\,{\text{m}}} \right)\] is \[1.8 \times {10^7}\,{\text{V}}\] .
The correct option is D.
Additional information:
An electrical potential is the amount of effort required to transfer a unit of electrical charge from a reference point to a particular point in an electrical field without generating an acceleration (also called the electrical field potential, potential decrease, or electrostatic potential).
Note:While solving the numerical, many students tend to make mistake by taking the distance as \[3\,{\text{m}}\] into account, however it is \[5\,{\text{m}}\] , as it is located in space. So, we need to find the shortest distance between the point charge and the point mentioned in the question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

