Answer
Verified
455.1k+ views
Hint: The effective resistance in series connections of the resistor will be. When resistors are connected in series, the current through each resistor will be same and potential difference is not same while in parallel connection, potential difference across each resistor will be same and current will be different.
Complete step by step answer:
In a series connection containing two resistors, the voltage across the two ends of the circuit is directly proportional to the effective resistance in the circuit, i.e. \[V \propto R\]
As there is a series combination of 2, 3 and 5 ohms in the circuit. So, the effective resistance is
\[R = 2 + 3 + 5 = 10\] ohms
As the 3 ohms resistor constitutes only the three-tenths of the total resistance, so the voltage across the 3 ohms resistor will be \[\dfrac{3}{{10}} \times 2 = 0.6\,V\]
Hence the potential difference across the 3 ohm resistor will be 0.6 V.
Hence, the correct option is (D).
Note:Resistors are said to be in series connection, if the same current is flowing through each resistor when the same potential difference is applied across the combination. The effective resistance of a series combination of resistors is always greater than the resistance of an individual resistor. In a series connection, the current is the same in every resistor. The current in the circuit is independent on the relative positions of different resistors in the connection. The potential difference across any resistor in the circuit is directly proportional to the resistance of that resistor.
Complete step by step answer:
In a series connection containing two resistors, the voltage across the two ends of the circuit is directly proportional to the effective resistance in the circuit, i.e. \[V \propto R\]
As there is a series combination of 2, 3 and 5 ohms in the circuit. So, the effective resistance is
\[R = 2 + 3 + 5 = 10\] ohms
As the 3 ohms resistor constitutes only the three-tenths of the total resistance, so the voltage across the 3 ohms resistor will be \[\dfrac{3}{{10}} \times 2 = 0.6\,V\]
Hence the potential difference across the 3 ohm resistor will be 0.6 V.
Hence, the correct option is (D).
Note:Resistors are said to be in series connection, if the same current is flowing through each resistor when the same potential difference is applied across the combination. The effective resistance of a series combination of resistors is always greater than the resistance of an individual resistor. In a series connection, the current is the same in every resistor. The current in the circuit is independent on the relative positions of different resistors in the connection. The potential difference across any resistor in the circuit is directly proportional to the resistance of that resistor.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE