
A car moving with a speed of $50km{h^{ - 1}}$ can be stopped by brakes after at least $6m$. If the same car is moving at a speed of $100km{h^{ - 1}}$ the minimum stopping distance is
A) 6m
B) 12m
C) 18m
D) 24m
Answer
233.1k+ views
Hint: The third equation of motion provides the final velocity of an object under uniform acceleration given the initial velocity and the distance traveled. By using the third equation of motion formula, apply the given values to find the minimum distance. When acceleration is constant, Velocity is proportional to time and Displacement is proportional to the square of time and Displacement is proportional to the square of the velocity.
Formula Used:
We will be using the formula of the third equation of motion i.e.,${v^2} - {u^2} = 2as$.
Complete step by step answer:
Given: The speed of the car $50km{h^{ - 1}}$
When brakes are applied final velocity becomes zero.
So we apply the third equation of motion
${v^2} - {u^2} = 2as$
Where $u$ is the initial speed of the car $50km{h^{ - 1}}$
$v$ is the final speed of the car that is zero
$a$ is the acceleration
\[s\] is the distance that is $6m$
We know that, Distance $ = $average velocity $ \times $Time
Therefore, for constant acceleration
Average velocity$ = $\[\dfrac{{{\text{final velocity}} \times {\text{initial velocity}}}}{2}\]
Average velocity $ = \dfrac{{(v + u)}}{2}$
Hence Distance $s = \dfrac{{({v^2} - {u^2})}}{{2a}}$
Applying the value in the third equation of motion,
${v^2} - 50 = 2a \times 6$
The final velocity of the car is $v = 0$
Substituting the velocity of the car $v = 0$, and we can calculate the acceleration a is given by
\[a = \dfrac{{ - 2500}}{{2 \times 6}}\]
$a = \dfrac{{ - 2500}}{{12}}$
To find the minimum stopping distance
${v^2} = 2as + {u^2}$
${100^2} = 2 \times (\dfrac{{ - 2500}}{{12}})s$
$s = 10000 \times \dfrac{6}{{2500}}$
$s = 24m$
Therefore the distance s is calculated
Hence the minimum stopping distance of the car is option (D), $24m$.
Notes: Dynamics and Kinematics are the two main descriptions of motion. Equation of motion can be used to derive the components like acceleration, velocity, and time. The relation between the components such as displacement, velocity, acceleration, speed, time, and distance are called Equations of motion. The third equation of motion is also called Laws of constant acceleration.
Formula Used:
We will be using the formula of the third equation of motion i.e.,${v^2} - {u^2} = 2as$.
Complete step by step answer:
Given: The speed of the car $50km{h^{ - 1}}$
When brakes are applied final velocity becomes zero.
So we apply the third equation of motion
${v^2} - {u^2} = 2as$
Where $u$ is the initial speed of the car $50km{h^{ - 1}}$
$v$ is the final speed of the car that is zero
$a$ is the acceleration
\[s\] is the distance that is $6m$
We know that, Distance $ = $average velocity $ \times $Time
Therefore, for constant acceleration
Average velocity$ = $\[\dfrac{{{\text{final velocity}} \times {\text{initial velocity}}}}{2}\]
Average velocity $ = \dfrac{{(v + u)}}{2}$
Hence Distance $s = \dfrac{{({v^2} - {u^2})}}{{2a}}$
Applying the value in the third equation of motion,
${v^2} - 50 = 2a \times 6$
The final velocity of the car is $v = 0$
Substituting the velocity of the car $v = 0$, and we can calculate the acceleration a is given by
\[a = \dfrac{{ - 2500}}{{2 \times 6}}\]
$a = \dfrac{{ - 2500}}{{12}}$
To find the minimum stopping distance
${v^2} = 2as + {u^2}$
${100^2} = 2 \times (\dfrac{{ - 2500}}{{12}})s$
$s = 10000 \times \dfrac{6}{{2500}}$
$s = 24m$
Therefore the distance s is calculated
Hence the minimum stopping distance of the car is option (D), $24m$.
Notes: Dynamics and Kinematics are the two main descriptions of motion. Equation of motion can be used to derive the components like acceleration, velocity, and time. The relation between the components such as displacement, velocity, acceleration, speed, time, and distance are called Equations of motion. The third equation of motion is also called Laws of constant acceleration.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

