Answer

Verified

452.4k+ views

Hint: - The question can be solved easily by the use of combination theory of selection of items and then using basic definition of probability.

$\left( i \right)$ All will be blue.

As we know that if we have to select $n$ items from $m$items then according to combination theory it can be done in ${}^m{C_n}$ different ways.

Given that 5 marbles are to be chosen from 60 marbles (10 red, 20 blue and 30 green).

Hence, no of ways of selection ${\text{n}}\left( S \right) = {}^{60}{C_5}$

Let $A$ be the event that all are blue.

Out of 20 blue marbles, 5 will be drawn. Hence, No of ways of such selection is:

$n\left( A \right) = {}^{20}{C_5}$

Since by the basic definition of probability we know that

P(A)=favorable cases/total cases

$

\therefore P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( S \right)}} = \dfrac{{{}^{20}{C_5}}}{{{}^{60}{C_5}}} \\

= \dfrac{{\dfrac{{20!}}{{5! \times 15!}}}}{{\dfrac{{60!}}{{5! \times 55!}}}}\left[ {\because {}^m{C_n} = \dfrac{{m!}}{{n!\left( {m - n} \right)!}}} \right] \\

= \dfrac{{\dfrac{{20!}}{{15!}}}}{{\dfrac{{60!}}{{55!}}}} = \dfrac{{20! \times 55!}}{{15! \times 60!}} \\

$

$\left( {ii} \right)$ At least one will be green.

$P\left( {{\text{atleast one will be green}}} \right) = 1 - P\left( {{\text{none of the marbles are green}}} \right)$

Let’s first calculate the probability that none of the drawn marbles are green.

Let B be the event that none of the marbles are green which makes the total available marbles = 60-30 = 30

Now, out of these 30 marbles, 5 are to be drawn.

Hence, No of ways of such selection is:

Hence, $n\left( B \right) = {}^{30}{C_5}$

By the basic definition of probability we know that:

\[

P\left( B \right) = \dfrac{{n\left( B \right)}}{{n\left( S \right)}} = \dfrac{{{}^{30}{C_5}}}{{{}^{60}{C_5}}} \\

\therefore P\left( {{\text{at least one will be green}}} \right) = 1 - P\left( {{\text{none of the marbles are green}}} \right) \\

{\text{ }} = 1 - \dfrac{{{}^{30}{C_5}}}{{{}^{60}{C_5}}} \\

\Rightarrow P\left( {{\text{at least one will be green}}} \right) = \dfrac{{{}^{60}{C_5} - {}^{30}{C_5}}}{{{}^{60}{C_5}}} \\

= \dfrac{{\dfrac{{60!}}{{5! \times 55!}} - \dfrac{{30!}}{{5! \times 25!}}}}{{\dfrac{{60!}}{{5! \times 55!}}}}\left[ {\because {}^m{C_n} = \dfrac{{m!}}{{n!\left( {m - n} \right)!}}} \right] \\

= \dfrac{{\dfrac{{60!}}{{55!}} - \dfrac{{30!}}{{25!}}}}{{\dfrac{{60!}}{{55!}}}} \\

\]

Note: Using the method of combination is one of the best and shortest ways to find the probability but we need to take extra caution on the events that are mutually exclusive. Also, in some cases where we are unable to find the probability of happening of an event directly, we rather calculate the probability of not happening of that event and further subtract it by one.

$\left( i \right)$ All will be blue.

As we know that if we have to select $n$ items from $m$items then according to combination theory it can be done in ${}^m{C_n}$ different ways.

Given that 5 marbles are to be chosen from 60 marbles (10 red, 20 blue and 30 green).

Hence, no of ways of selection ${\text{n}}\left( S \right) = {}^{60}{C_5}$

Let $A$ be the event that all are blue.

Out of 20 blue marbles, 5 will be drawn. Hence, No of ways of such selection is:

$n\left( A \right) = {}^{20}{C_5}$

Since by the basic definition of probability we know that

P(A)=favorable cases/total cases

$

\therefore P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( S \right)}} = \dfrac{{{}^{20}{C_5}}}{{{}^{60}{C_5}}} \\

= \dfrac{{\dfrac{{20!}}{{5! \times 15!}}}}{{\dfrac{{60!}}{{5! \times 55!}}}}\left[ {\because {}^m{C_n} = \dfrac{{m!}}{{n!\left( {m - n} \right)!}}} \right] \\

= \dfrac{{\dfrac{{20!}}{{15!}}}}{{\dfrac{{60!}}{{55!}}}} = \dfrac{{20! \times 55!}}{{15! \times 60!}} \\

$

$\left( {ii} \right)$ At least one will be green.

$P\left( {{\text{atleast one will be green}}} \right) = 1 - P\left( {{\text{none of the marbles are green}}} \right)$

Let’s first calculate the probability that none of the drawn marbles are green.

Let B be the event that none of the marbles are green which makes the total available marbles = 60-30 = 30

Now, out of these 30 marbles, 5 are to be drawn.

Hence, No of ways of such selection is:

Hence, $n\left( B \right) = {}^{30}{C_5}$

By the basic definition of probability we know that:

\[

P\left( B \right) = \dfrac{{n\left( B \right)}}{{n\left( S \right)}} = \dfrac{{{}^{30}{C_5}}}{{{}^{60}{C_5}}} \\

\therefore P\left( {{\text{at least one will be green}}} \right) = 1 - P\left( {{\text{none of the marbles are green}}} \right) \\

{\text{ }} = 1 - \dfrac{{{}^{30}{C_5}}}{{{}^{60}{C_5}}} \\

\Rightarrow P\left( {{\text{at least one will be green}}} \right) = \dfrac{{{}^{60}{C_5} - {}^{30}{C_5}}}{{{}^{60}{C_5}}} \\

= \dfrac{{\dfrac{{60!}}{{5! \times 55!}} - \dfrac{{30!}}{{5! \times 25!}}}}{{\dfrac{{60!}}{{5! \times 55!}}}}\left[ {\because {}^m{C_n} = \dfrac{{m!}}{{n!\left( {m - n} \right)!}}} \right] \\

= \dfrac{{\dfrac{{60!}}{{55!}} - \dfrac{{30!}}{{25!}}}}{{\dfrac{{60!}}{{55!}}}} \\

\]

Note: Using the method of combination is one of the best and shortest ways to find the probability but we need to take extra caution on the events that are mutually exclusive. Also, in some cases where we are unable to find the probability of happening of an event directly, we rather calculate the probability of not happening of that event and further subtract it by one.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE