
A box contains 10 red marbles, 20 blue marbles and 30 green marbles, 5 marbles are drawn from the box what is the probability that
$\left( i \right)$ All are blue?
$\left( {ii} \right)$ At least one will be green?
Answer
612.9k+ views
Hint: - The question can be solved easily by the use of combination theory of selection of items and then using basic definition of probability.
$\left( i \right)$ All will be blue.
As we know that if we have to select $n$ items from $m$items then according to combination theory it can be done in ${}^m{C_n}$ different ways.
Given that 5 marbles are to be chosen from 60 marbles (10 red, 20 blue and 30 green).
Hence, no of ways of selection ${\text{n}}\left( S \right) = {}^{60}{C_5}$
Let $A$ be the event that all are blue.
Out of 20 blue marbles, 5 will be drawn. Hence, No of ways of such selection is:
$n\left( A \right) = {}^{20}{C_5}$
Since by the basic definition of probability we know that
P(A)=favorable cases/total cases
$
\therefore P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( S \right)}} = \dfrac{{{}^{20}{C_5}}}{{{}^{60}{C_5}}} \\
= \dfrac{{\dfrac{{20!}}{{5! \times 15!}}}}{{\dfrac{{60!}}{{5! \times 55!}}}}\left[ {\because {}^m{C_n} = \dfrac{{m!}}{{n!\left( {m - n} \right)!}}} \right] \\
= \dfrac{{\dfrac{{20!}}{{15!}}}}{{\dfrac{{60!}}{{55!}}}} = \dfrac{{20! \times 55!}}{{15! \times 60!}} \\
$
$\left( {ii} \right)$ At least one will be green.
$P\left( {{\text{atleast one will be green}}} \right) = 1 - P\left( {{\text{none of the marbles are green}}} \right)$
Let’s first calculate the probability that none of the drawn marbles are green.
Let B be the event that none of the marbles are green which makes the total available marbles = 60-30 = 30
Now, out of these 30 marbles, 5 are to be drawn.
Hence, No of ways of such selection is:
Hence, $n\left( B \right) = {}^{30}{C_5}$
By the basic definition of probability we know that:
\[
P\left( B \right) = \dfrac{{n\left( B \right)}}{{n\left( S \right)}} = \dfrac{{{}^{30}{C_5}}}{{{}^{60}{C_5}}} \\
\therefore P\left( {{\text{at least one will be green}}} \right) = 1 - P\left( {{\text{none of the marbles are green}}} \right) \\
{\text{ }} = 1 - \dfrac{{{}^{30}{C_5}}}{{{}^{60}{C_5}}} \\
\Rightarrow P\left( {{\text{at least one will be green}}} \right) = \dfrac{{{}^{60}{C_5} - {}^{30}{C_5}}}{{{}^{60}{C_5}}} \\
= \dfrac{{\dfrac{{60!}}{{5! \times 55!}} - \dfrac{{30!}}{{5! \times 25!}}}}{{\dfrac{{60!}}{{5! \times 55!}}}}\left[ {\because {}^m{C_n} = \dfrac{{m!}}{{n!\left( {m - n} \right)!}}} \right] \\
= \dfrac{{\dfrac{{60!}}{{55!}} - \dfrac{{30!}}{{25!}}}}{{\dfrac{{60!}}{{55!}}}} \\
\]
Note: Using the method of combination is one of the best and shortest ways to find the probability but we need to take extra caution on the events that are mutually exclusive. Also, in some cases where we are unable to find the probability of happening of an event directly, we rather calculate the probability of not happening of that event and further subtract it by one.
$\left( i \right)$ All will be blue.
As we know that if we have to select $n$ items from $m$items then according to combination theory it can be done in ${}^m{C_n}$ different ways.
Given that 5 marbles are to be chosen from 60 marbles (10 red, 20 blue and 30 green).
Hence, no of ways of selection ${\text{n}}\left( S \right) = {}^{60}{C_5}$
Let $A$ be the event that all are blue.
Out of 20 blue marbles, 5 will be drawn. Hence, No of ways of such selection is:
$n\left( A \right) = {}^{20}{C_5}$
Since by the basic definition of probability we know that
P(A)=favorable cases/total cases
$
\therefore P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( S \right)}} = \dfrac{{{}^{20}{C_5}}}{{{}^{60}{C_5}}} \\
= \dfrac{{\dfrac{{20!}}{{5! \times 15!}}}}{{\dfrac{{60!}}{{5! \times 55!}}}}\left[ {\because {}^m{C_n} = \dfrac{{m!}}{{n!\left( {m - n} \right)!}}} \right] \\
= \dfrac{{\dfrac{{20!}}{{15!}}}}{{\dfrac{{60!}}{{55!}}}} = \dfrac{{20! \times 55!}}{{15! \times 60!}} \\
$
$\left( {ii} \right)$ At least one will be green.
$P\left( {{\text{atleast one will be green}}} \right) = 1 - P\left( {{\text{none of the marbles are green}}} \right)$
Let’s first calculate the probability that none of the drawn marbles are green.
Let B be the event that none of the marbles are green which makes the total available marbles = 60-30 = 30
Now, out of these 30 marbles, 5 are to be drawn.
Hence, No of ways of such selection is:
Hence, $n\left( B \right) = {}^{30}{C_5}$
By the basic definition of probability we know that:
\[
P\left( B \right) = \dfrac{{n\left( B \right)}}{{n\left( S \right)}} = \dfrac{{{}^{30}{C_5}}}{{{}^{60}{C_5}}} \\
\therefore P\left( {{\text{at least one will be green}}} \right) = 1 - P\left( {{\text{none of the marbles are green}}} \right) \\
{\text{ }} = 1 - \dfrac{{{}^{30}{C_5}}}{{{}^{60}{C_5}}} \\
\Rightarrow P\left( {{\text{at least one will be green}}} \right) = \dfrac{{{}^{60}{C_5} - {}^{30}{C_5}}}{{{}^{60}{C_5}}} \\
= \dfrac{{\dfrac{{60!}}{{5! \times 55!}} - \dfrac{{30!}}{{5! \times 25!}}}}{{\dfrac{{60!}}{{5! \times 55!}}}}\left[ {\because {}^m{C_n} = \dfrac{{m!}}{{n!\left( {m - n} \right)!}}} \right] \\
= \dfrac{{\dfrac{{60!}}{{55!}} - \dfrac{{30!}}{{25!}}}}{{\dfrac{{60!}}{{55!}}}} \\
\]
Note: Using the method of combination is one of the best and shortest ways to find the probability but we need to take extra caution on the events that are mutually exclusive. Also, in some cases where we are unable to find the probability of happening of an event directly, we rather calculate the probability of not happening of that event and further subtract it by one.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

