
A body is whirled in a horizontal circle of radius 20 cm. It has an angular velocity of 10 rad/s. What is its linear velocity at any point on a circular path?
a. \[20\,m/s\]
b. \[\sqrt 2\,m/s\]
c. \[10\,m/s\]
d. \[2\,m/s\]
Answer
233.1k+ views
Hint:When a body is moving in a circular path then the position of the body along the circular path changes with time. As we know, the rate of change in the linear position of the body with respect to time is called linear velocity. The rate of change of the angular position with respect to time is called the angular velocity.
Formula used:
\[v = \omega r\]
where v is the linear velocity, \[\omega \] is the angular velocity and r is the distance of the point from the axis of rotation.
Complete step by step solution:
It is given that the body is whirled in a horizontal circle. The radius of the circle is given as 20 cm. The angular velocity of the body is given as 10 rad/s. We need to find the linear velocity at any point on a circular path.

Image: Body motion in a circular path
Let the linear velocity of the body is v. The distance of the body from the axis of rotation, i.e. from the center of the circular path is equal to the radius of the circular path.
\[r = 20\,cm = 0.2\,m\]
\[\Rightarrow \omega = 10\,rad/s\]
When a body is moving in a given circular path then the position of the body along the circular path changes with time.The rate of change in the linear position of the body with respect to time is called the linear velocity, v.
The linear velocity of the body is linearly related to the angular velocity of the body in the circular path as,
\[v = \omega r\]
Putting the values, we get the linear velocity of the body in circular orbit as,
\[v = 10 \times 0.2\,m/s\]
\[\therefore v = 2\,m/s\]
Hence, the linear velocity of the body is equal to 2 m/s.
Therefore, the correct option is d.
Note: We should be careful while using the relation between the linear velocity and the angular velocity as it is for the instantaneous velocity. So, if we find the linear velocity of the accelerated body in a circular path then the obtained linear velocity will be corresponding to the angular velocity at that instant in time.
Formula used:
\[v = \omega r\]
where v is the linear velocity, \[\omega \] is the angular velocity and r is the distance of the point from the axis of rotation.
Complete step by step solution:
It is given that the body is whirled in a horizontal circle. The radius of the circle is given as 20 cm. The angular velocity of the body is given as 10 rad/s. We need to find the linear velocity at any point on a circular path.

Image: Body motion in a circular path
Let the linear velocity of the body is v. The distance of the body from the axis of rotation, i.e. from the center of the circular path is equal to the radius of the circular path.
\[r = 20\,cm = 0.2\,m\]
\[\Rightarrow \omega = 10\,rad/s\]
When a body is moving in a given circular path then the position of the body along the circular path changes with time.The rate of change in the linear position of the body with respect to time is called the linear velocity, v.
The linear velocity of the body is linearly related to the angular velocity of the body in the circular path as,
\[v = \omega r\]
Putting the values, we get the linear velocity of the body in circular orbit as,
\[v = 10 \times 0.2\,m/s\]
\[\therefore v = 2\,m/s\]
Hence, the linear velocity of the body is equal to 2 m/s.
Therefore, the correct option is d.
Note: We should be careful while using the relation between the linear velocity and the angular velocity as it is for the instantaneous velocity. So, if we find the linear velocity of the accelerated body in a circular path then the obtained linear velocity will be corresponding to the angular velocity at that instant in time.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

