Answer
Verified
390.3k+ views
Hint: In order to solve this question, we are first going to consider the initial height and the corresponding initial potential energy, then finding the height after the first bounce, and thus, the corresponding potential energy is found. Then, their difference is found and thus fraction of energy lost.
Formula used:
If the mass of the ball is\[m\] and its original height is \[h\], thus, its initial potential energy will be
\[{U_i} = mgh\]
Complete step-by-step solution:
Let the mass of the ball be\[m\] and its original height be\[h\], thus, its initial potential energy will be given by the equation
\[{U_i} = mgh\]
Now, after that one first bounce, the height is going to be\[80\% \,of\,h\], i.e. the original height of the ball.
Thus, the final height is
\[{h_f} = \dfrac{{80}}{{100}} \times h = 0.80h\]
The final potential energy of the ball after each bounce will be
\[{U_f} = 0.80mgh\]
The potential energy lost in each bounce is equal to
\[{U_i} - {U_f} = mgh - 0.80mgh = 0.20mgh\]
Therefore, fraction of the potential energy lost by the ball in each bounce is equal to: \[0.20\]
Note:It is important to note that the energy lost in each bounce is inversely proportional to the height to which the ball reaches after one bounce. The more is the height of the ball after bouncing off, the less is the energy lost by the ball in that one bounce and if the height after bouncing remains almost same, the energy lost is also almost same.
Formula used:
If the mass of the ball is\[m\] and its original height is \[h\], thus, its initial potential energy will be
\[{U_i} = mgh\]
Complete step-by-step solution:
Let the mass of the ball be\[m\] and its original height be\[h\], thus, its initial potential energy will be given by the equation
\[{U_i} = mgh\]
Now, after that one first bounce, the height is going to be\[80\% \,of\,h\], i.e. the original height of the ball.
Thus, the final height is
\[{h_f} = \dfrac{{80}}{{100}} \times h = 0.80h\]
The final potential energy of the ball after each bounce will be
\[{U_f} = 0.80mgh\]
The potential energy lost in each bounce is equal to
\[{U_i} - {U_f} = mgh - 0.80mgh = 0.20mgh\]
Therefore, fraction of the potential energy lost by the ball in each bounce is equal to: \[0.20\]
Note:It is important to note that the energy lost in each bounce is inversely proportional to the height to which the ball reaches after one bounce. The more is the height of the ball after bouncing off, the less is the energy lost by the ball in that one bounce and if the height after bouncing remains almost same, the energy lost is also almost same.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE